Falls are very dangerous events among elderly people. Several automatic fall detectors have been developed to reduce the time of the medical intervention, but they cannot avoid the injures due to the fall. The purpose of this study has been to identify a computational framework for the real-time and automatic detection of the fall risk, allowing the fast adoption of properly intervention strategies, to reduce injuries and traumas due to falls. A wearable, wireless and minimally invasive surface Electromyography (EMG)-based system has been used to measure four lower-limb muscles activities. Eleven young healthy subjects have simulated several fall events (through a movable platform) and normal Activities of Daily Living (ADLs) and their patterns have been analyzed. Highly discriminative features extracted within the EMG signals for the pre impact fall evaluation have been explored and a threshold-based approach has been adopted, assuring the real-time functioning. The threshold level for each feature has been set to distinguish an instability condition from normal activities. The proposed system seems able to recognize all falls with an average lead-time of 840 ms before the impact, in simulated and controlled fall conditions.

Fall risk evaluation by electromyography solutions

Rescio Gabriele;Leone Alessandro;Siciliano Pietro
2017

Abstract

Falls are very dangerous events among elderly people. Several automatic fall detectors have been developed to reduce the time of the medical intervention, but they cannot avoid the injures due to the fall. The purpose of this study has been to identify a computational framework for the real-time and automatic detection of the fall risk, allowing the fast adoption of properly intervention strategies, to reduce injuries and traumas due to falls. A wearable, wireless and minimally invasive surface Electromyography (EMG)-based system has been used to measure four lower-limb muscles activities. Eleven young healthy subjects have simulated several fall events (through a movable platform) and normal Activities of Daily Living (ADLs) and their patterns have been analyzed. Highly discriminative features extracted within the EMG signals for the pre impact fall evaluation have been explored and a threshold-based approach has been adopted, assuring the real-time functioning. The threshold level for each feature has been set to distinguish an instability condition from normal activities. The proposed system seems able to recognize all falls with an average lead-time of 840 ms before the impact, in simulated and controlled fall conditions.
2017
Istituto per la Microelettronica e Microsistemi - IMM
9783319542829
Healthcare
Risk of fall
Wearable
Wireless surface electromyography probes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/354276
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact