In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw-Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that both families perform comparably within such framework.

Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs

L Tamellini;
2015

Abstract

In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw-Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that both families perform comparably within such framework.
2015
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
978-3-319-19799-9
random PDE
sparse grids stochastic collocation
Leja points
clenshaw-curtis points
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/354301
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact