We present a comparative study of gas sensing properties of p-type CuO nanowires, characterized by Kelvin Probe (KP) surface workfunction gas sensing and formal conductometric (chemoresistive) gas sensing schemes, with main emphasis on the detection performance of low concentrations of butanol. P-type CuO nanowires were prepared by thermal oxidation of Cu thin film in a controlled environment at oxidation temperatures of 300 degrees C and 400 degrees C. Structural characterizations of grown nanomaterials were carried out by X-ray diffraction, micro-Raman spectrophotometry and scanning electron microscopy (SEM). Butanol sensing responses recorded from both methods were compared and further analyzed to calculate approximate values of electron affinity variations. (C) 2015 Elsevier B.V. All rights reserved.
Kelvin probe as an effective tool to develop sensitive p-type CuO gas sensors
Mazhar M E;Comini E;Zappa D;Baratto C;Sberveglieri G
2016
Abstract
We present a comparative study of gas sensing properties of p-type CuO nanowires, characterized by Kelvin Probe (KP) surface workfunction gas sensing and formal conductometric (chemoresistive) gas sensing schemes, with main emphasis on the detection performance of low concentrations of butanol. P-type CuO nanowires were prepared by thermal oxidation of Cu thin film in a controlled environment at oxidation temperatures of 300 degrees C and 400 degrees C. Structural characterizations of grown nanomaterials were carried out by X-ray diffraction, micro-Raman spectrophotometry and scanning electron microscopy (SEM). Butanol sensing responses recorded from both methods were compared and further analyzed to calculate approximate values of electron affinity variations. (C) 2015 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.