The Mn4 CaO5 cluster of photosystem II promotes a crucial step in the oxygenic photosynthesis, namely, the water-splitting reaction. The structure of such cluster in the S1 state of the Kok-Joliot's cycle has been recently resolved by femtosecond X-ray free-electron laser (XFEL) measurements. However, the XFEL results are characterized by appreciable discrepancies with previous X-ray diffraction (XRD), as well as with S1 models based on ab initio calculations. We provide here a unifying picture based on a combined set of DFT-based structures and molecular dynamics simulations of the S0 and S1 states. Our findings indicate that the XFEL results cannot be interpreted on the grounds of a single structure. A combination of two S1 stable isomers together with a minority contribution of the S0 state is necessary to reproduce XFEL results within 0.16 A.

A Spotlight on the Compatibility between XFEL and Ab Initio Structures of the Oxygen Evolving Complex in Photosystem II.

Mattioli Giuseppe;
2017

Abstract

The Mn4 CaO5 cluster of photosystem II promotes a crucial step in the oxygenic photosynthesis, namely, the water-splitting reaction. The structure of such cluster in the S1 state of the Kok-Joliot's cycle has been recently resolved by femtosecond X-ray free-electron laser (XFEL) measurements. However, the XFEL results are characterized by appreciable discrepancies with previous X-ray diffraction (XRD), as well as with S1 models based on ab initio calculations. We provide here a unifying picture based on a combined set of DFT-based structures and molecular dynamics simulations of the S0 and S1 states. Our findings indicate that the XFEL results cannot be interpreted on the grounds of a single structure. A combination of two S1 stable isomers together with a minority contribution of the S0 state is necessary to reproduce XFEL results within 0.16 A.
2017
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
density functional calculations · molecular dynamics · photosystem II · water splitting · X-ray free-electron laser
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/354358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact