We show how certain long-range models of interacting fermions in d + 1 dimensions are equivalent to gauge theories in D + 1 dimensions in which gauge fields are defined in a dimension (D) larger than the dimension (d) of the fermionic theory to be simulated. For d = 1 it is possible to obtain an exact mapping, providing an expression of the fermionic interaction potential in terms of half-integer powers of the Laplacian. An analogous mapping can be applied to the kinetic term of the bosonized theory. A diagrammatic representation of the theories obtained by dimensional mismatch is presented, and consequences and applications of the established duality are discussed. Finally, by using a perturbative approach, we address the canonical quantization of fermionic theories presenting non-locality in the interaction term to construct the Hamiltonians for the effective theories found by dimensional reduction. We conclude by showing that one can engineer the gauge fields and the dimensional mismatch in order to obtain long-range effective Hamiltonians with 1/r or 1/r 2 potentials as examples

Long-range interactions from U (1) gauge fields via dimensional mismatch

Trombettoni A
2018

Abstract

We show how certain long-range models of interacting fermions in d + 1 dimensions are equivalent to gauge theories in D + 1 dimensions in which gauge fields are defined in a dimension (D) larger than the dimension (d) of the fermionic theory to be simulated. For d = 1 it is possible to obtain an exact mapping, providing an expression of the fermionic interaction potential in terms of half-integer powers of the Laplacian. An analogous mapping can be applied to the kinetic term of the bosonized theory. A diagrammatic representation of the theories obtained by dimensional mismatch is presented, and consequences and applications of the established duality are discussed. Finally, by using a perturbative approach, we address the canonical quantization of fermionic theories presenting non-locality in the interaction term to construct the Hamiltonians for the effective theories found by dimensional reduction. We conclude by showing that one can engineer the gauge fields and the dimensional mismatch in order to obtain long-range effective Hamiltonians with 1/r or 1/r 2 potentials as examples
2018
Istituto Officina dei Materiali - IOM -
Bosonisation
cold atoms
gauge symmetry and gauge fields
quantum gases
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/354494
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact