With the increasing number of radar satellites and improved data processing tools, multi-temporal interferometry (MTI) can considerably enhance our capabilities of monitoring landslide and subsidence hazards. MTI provides long-term (years), regular (weekly-monthly), precise (mm) measurements of ground displacements over large areas (thousands of km2), combined with high spatial resolution (up to 1-3 m) and possibility of multi-scale (regional to site-specific) investigations using the same series of radar images. To highlight the great potential of high resolution MTI we discuss application examples from two seismically active regions prone to land instability: i) Albania, including the large plain area occupied by the city of Tirana and nearby scarcely populated mountains, and ii) Haiti, including the Port-au-Prince metropolitan area, with coastal and mountain zones destabilized by the 2010 Mw 7.0 earthquake. It is shown that MTI can provide very useful results in a wide range of geomorphic, climatic and vegetation environments.

High resolution satellite multi-temporal interferometry for detecting and monitoring landslide and subsidence hazards

Janusz WASOWSKI;Fabio BOVENGA;
2015

Abstract

With the increasing number of radar satellites and improved data processing tools, multi-temporal interferometry (MTI) can considerably enhance our capabilities of monitoring landslide and subsidence hazards. MTI provides long-term (years), regular (weekly-monthly), precise (mm) measurements of ground displacements over large areas (thousands of km2), combined with high spatial resolution (up to 1-3 m) and possibility of multi-scale (regional to site-specific) investigations using the same series of radar images. To highlight the great potential of high resolution MTI we discuss application examples from two seismically active regions prone to land instability: i) Albania, including the large plain area occupied by the city of Tirana and nearby scarcely populated mountains, and ii) Haiti, including the Port-au-Prince metropolitan area, with coastal and mountain zones destabilized by the 2010 Mw 7.0 earthquake. It is shown that MTI can provide very useful results in a wide range of geomorphic, climatic and vegetation environments.
2015
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
landslide
subsidence
hazard
detection
monitoring
satellite interferometry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/354541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact