To detect the presence of neighboring vegetation, shade-avoiding plants have evolved the ability to perceive and integrate multiple signals. Among them, changes in light quality and quantity are central to elicit and regulate the shade avoidance response. Here, we describe recent progresses in the comprehension of the signaling mechanisms underlying the shade avoidance response, focusing on Arabidopsis, because most of our knowledge derives from studies conducted on this model plant. Shade avoidance is an adaptive response that results in phenotypes with a high relative fitness in individual plants growing within dense vegetation. However, it affects the growth, development, and yield of crops, and the design of new strategies aimed at attenuating shade avoidance at defined developmental stages and/or in specific organs in high-density crop plantings is a major challenge for the future. For this reason, in this review, we also report on recent advances in the molecular description of the shade avoidance response in crops, such as maize and tomato, and discuss their similarities and differences with Arabidopsis.
Multiple Pathways in the Control of the Shade Avoidance Response
Sessa G;Carabelli M;Ruberti I
2018
Abstract
To detect the presence of neighboring vegetation, shade-avoiding plants have evolved the ability to perceive and integrate multiple signals. Among them, changes in light quality and quantity are central to elicit and regulate the shade avoidance response. Here, we describe recent progresses in the comprehension of the signaling mechanisms underlying the shade avoidance response, focusing on Arabidopsis, because most of our knowledge derives from studies conducted on this model plant. Shade avoidance is an adaptive response that results in phenotypes with a high relative fitness in individual plants growing within dense vegetation. However, it affects the growth, development, and yield of crops, and the design of new strategies aimed at attenuating shade avoidance at defined developmental stages and/or in specific organs in high-density crop plantings is a major challenge for the future. For this reason, in this review, we also report on recent advances in the molecular description of the shade avoidance response in crops, such as maize and tomato, and discuss their similarities and differences with Arabidopsis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.