Synthetic Aperture Radar (SAR) Tomography (TomoSAR) allows extending the 2-D focusing capabilities of SAR to the elevation direction, orthogonal to the azimuth and range. The multi-dimensional extension (along the time) also enables the monitoring of possible scatterer displacements. A key aspect of TomoSAR is the identification, in the presence of noise, of multiple persistent scatterers interfering within the same 2-D (azimuth range plane) pixel. To this aim, the use of multi-look has been shown to provide tangible improvements in the detection of single and double interfering persistent scatterers at the expense of a minor spatial resolution loss. Depending on the system acquisition characteristics, this operation may require also the detection of multiple scatterers interfering at distances lower than the Rayleigh resolution (super-resolution). In this work we further investigated the use of multi-look in TomoSAR for the detection of multiple scatterers located also below the Rayleigh resolution. A solution relying on the Capon filtering was first analyzed, due to its improved capabilities in the separation of the responses of multiple scatterers and sidelobe suppression. Moreover, in the framework of the Generalized Likelihood Ratio Test (GLRT), the single-look support based detection strategy recently proposed in the literature was extended to the multi-look case. Experimental results of tests carried out on two datasets acquired by TerraSAR-X and COSMO-SkyMED sensors are provided to show the performances of the proposed solution as well as the effects of the baseline span of the dataset for the detection capabilities of interfering scatterers.
Super-resolution multi-look detection in SAR tomography
Fornaro Gianfranco;Pauciullo Antonio;Reale Diego;
2018
Abstract
Synthetic Aperture Radar (SAR) Tomography (TomoSAR) allows extending the 2-D focusing capabilities of SAR to the elevation direction, orthogonal to the azimuth and range. The multi-dimensional extension (along the time) also enables the monitoring of possible scatterer displacements. A key aspect of TomoSAR is the identification, in the presence of noise, of multiple persistent scatterers interfering within the same 2-D (azimuth range plane) pixel. To this aim, the use of multi-look has been shown to provide tangible improvements in the detection of single and double interfering persistent scatterers at the expense of a minor spatial resolution loss. Depending on the system acquisition characteristics, this operation may require also the detection of multiple scatterers interfering at distances lower than the Rayleigh resolution (super-resolution). In this work we further investigated the use of multi-look in TomoSAR for the detection of multiple scatterers located also below the Rayleigh resolution. A solution relying on the Capon filtering was first analyzed, due to its improved capabilities in the separation of the responses of multiple scatterers and sidelobe suppression. Moreover, in the framework of the Generalized Likelihood Ratio Test (GLRT), the single-look support based detection strategy recently proposed in the literature was extended to the multi-look case. Experimental results of tests carried out on two datasets acquired by TerraSAR-X and COSMO-SkyMED sensors are provided to show the performances of the proposed solution as well as the effects of the baseline span of the dataset for the detection capabilities of interfering scatterers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.