The human antigen R (HuR) is an RNA-binding protein known to modulate the expression of target mRNA coding for proteins involved in inflammation, tumorigenesis, and stress responses and is a valuable drug target. We previously found that dihydrotanshinone-I (DHTS, 1) prevents the association of HuR with its RNA substrate, thus imparing its function. Herein, inspired by DHTS structure, we designed and synthesized an array of ortho-quinones (tanshinone mimics) using a function-oriented synthetic approach. Among others, compound 6a and 6n turned out to be more effective than 1, showing a nanomolar Ki and disrupting HuR binding to RNA in cells. A combined approach of NMR titration and molecular dynamics (MD) simulations suggests that 6a stabilizes HuR in a peculiar closed conformation, which is incompatible with RNA binding. Alpha screen and RNA-electrophoretic mobility shift assays (REMSA) data on newly synthesized compounds allowed, for the first time, the generation of structure activity relationships (SARs), thus providing a solid background for the generation of highly effective HuR disruptors.
Interfering with HuR-RNA Interaction: Design, Synthesis and Biological Characterization of Tanshinone Mimics as Novel, Effective HuR Inhibitors
Manzoni L;
2018
Abstract
The human antigen R (HuR) is an RNA-binding protein known to modulate the expression of target mRNA coding for proteins involved in inflammation, tumorigenesis, and stress responses and is a valuable drug target. We previously found that dihydrotanshinone-I (DHTS, 1) prevents the association of HuR with its RNA substrate, thus imparing its function. Herein, inspired by DHTS structure, we designed and synthesized an array of ortho-quinones (tanshinone mimics) using a function-oriented synthetic approach. Among others, compound 6a and 6n turned out to be more effective than 1, showing a nanomolar Ki and disrupting HuR binding to RNA in cells. A combined approach of NMR titration and molecular dynamics (MD) simulations suggests that 6a stabilizes HuR in a peculiar closed conformation, which is incompatible with RNA binding. Alpha screen and RNA-electrophoretic mobility shift assays (REMSA) data on newly synthesized compounds allowed, for the first time, the generation of structure activity relationships (SARs), thus providing a solid background for the generation of highly effective HuR disruptors.File | Dimensione | Formato | |
---|---|---|---|
prod_392281-doc_168663.pdf
accesso aperto
Descrizione: Interfering with HuR-RNA Interaction: Design, Synthesis and Biological Characterization of Tanshinone Mimics as Novel, Effective HuR Inhibitors
Tipologia:
Versione Editoriale (PDF)
Dimensione
6.9 MB
Formato
Adobe PDF
|
6.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.