Growing evidence suggests a link between obesity and neurodegeneration. The purpose of the present study was to explore the neuroprotective potential of glucagon-like peptide-2 (GLP-2) in the brain of high fat diet (HFD)- fed mice. Markers of inflammation and oxidative stress were analysed in the brains of obese mice chronically treated with [Gly2]-GLP-2 (teduglutide), the stable analogue of the GLP-2, and they were compared to agematched untreated obese and lean animals. Neurodegeneration was examined by TUNEL assay. HFD feeding increased the expression of pro-inflammatory mediators (NF-kB, IL-8, TNF-?, IL-1? and IL-6), glial fibrillary acidic protein (GFAP), index of gliosis and neurodegeneration, stress marker proteins (p-ERK, Hsp60 and i-NOS), amyloid-? precursor protein (APP). [Gly2]-GLP-2 treatment significantly attenuated the HFD-induced increased expression of the various markers, as well as the higher levels of reactive oxygen species found in brains of untreated-HFD mice. Immunofluorescence confirmed that the increase of GFAP or APP in the brain cortex of HFD mice were less prominent in the [Gly2]-GLP-2 treated group. TUNEL-positive cell number in brain sections of [Gly2]-GLP-2-treated HFD-fed mice was significantly lesser in comparison with untreated-HFD animals and similar to STD fed mice. In conclusion, the results of the present study suggest that GLP-2 stable analogue improves the obesity-associated neuroinflammation and the central stress conditions, it reduces the neuronal apoptotic death, providing evidence for a neuroprotective role of the peptide.

Glucagon-like peptide-2 reduces the obesity associated inflammation in brain

Nuzzo D;Picone P;Galizzi G;Di Carlo M;
2019

Abstract

Growing evidence suggests a link between obesity and neurodegeneration. The purpose of the present study was to explore the neuroprotective potential of glucagon-like peptide-2 (GLP-2) in the brain of high fat diet (HFD)- fed mice. Markers of inflammation and oxidative stress were analysed in the brains of obese mice chronically treated with [Gly2]-GLP-2 (teduglutide), the stable analogue of the GLP-2, and they were compared to agematched untreated obese and lean animals. Neurodegeneration was examined by TUNEL assay. HFD feeding increased the expression of pro-inflammatory mediators (NF-kB, IL-8, TNF-?, IL-1? and IL-6), glial fibrillary acidic protein (GFAP), index of gliosis and neurodegeneration, stress marker proteins (p-ERK, Hsp60 and i-NOS), amyloid-? precursor protein (APP). [Gly2]-GLP-2 treatment significantly attenuated the HFD-induced increased expression of the various markers, as well as the higher levels of reactive oxygen species found in brains of untreated-HFD mice. Immunofluorescence confirmed that the increase of GFAP or APP in the brain cortex of HFD mice were less prominent in the [Gly2]-GLP-2 treated group. TUNEL-positive cell number in brain sections of [Gly2]-GLP-2-treated HFD-fed mice was significantly lesser in comparison with untreated-HFD animals and similar to STD fed mice. In conclusion, the results of the present study suggest that GLP-2 stable analogue improves the obesity-associated neuroinflammation and the central stress conditions, it reduces the neuronal apoptotic death, providing evidence for a neuroprotective role of the peptide.
2019
Istituto di biomedicina e di immunologia molecolare - IBIM - Sede Palermo
GLP-2 Neuroinflammation Oxidative stress Neurodegeneration Obesity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/355028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact