The scattering of electrons in dielectric materials is central to laser nanomachining1, light-driven electronics2 and radiation damage3-5. Here, we demonstrate real-time access to electron scatteringbyimplementingattosecondstreakingspectroscopy on dielectric nanoparticles: photoelectrons are generated inside the nanoparticles and both their transport through the material and photoemission are tracked on an attosecond timescale. We develop a theoretical framework for attosecond streaking spectroscopy in dielectrics and identify that the presence of the internal field inside the material cancels the influence of elastic scattering, enabling the selective characterization of the inelastic scattering time. The approach is demonstrated on silica nanoparticles, where an inelastic mean-free path is extracted for 20-30 eV. Our approach enables the characterization of inelastic scattering in various dielectric solids and liquids, including water, which can be studied in the form of droplets.

Attosecond chronoscopy of electron scattering in dielectric nanoparticles

Castrovilli MC;Poletto L;Frassetto F;Nisoli M;Calegari F;
2017

Abstract

The scattering of electrons in dielectric materials is central to laser nanomachining1, light-driven electronics2 and radiation damage3-5. Here, we demonstrate real-time access to electron scatteringbyimplementingattosecondstreakingspectroscopy on dielectric nanoparticles: photoelectrons are generated inside the nanoparticles and both their transport through the material and photoemission are tracked on an attosecond timescale. We develop a theoretical framework for attosecond streaking spectroscopy in dielectrics and identify that the presence of the internal field inside the material cancels the influence of elastic scattering, enabling the selective characterization of the inelastic scattering time. The approach is demonstrated on silica nanoparticles, where an inelastic mean-free path is extracted for 20-30 eV. Our approach enables the characterization of inelastic scattering in various dielectric solids and liquids, including water, which can be studied in the form of droplets.
2017
Istituto di fotonica e nanotecnologie - IFN
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
attosecond
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/355118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? ND
social impact