Particle-laden turbulent flows occur in a variety of industrial applications as well as in naturally occurring flows. While the numerical simulation of such flows has seen significant advances in recent years, it still remains a challenging problem. Many studies investigated the rheology of dense suspensions in laminar flows as well as the dynamics of point-particles in turbulence. Here we employ a fully-resolved numerical simulation based on a lattice Boltzmann scheme, to investigate turbulent flow with large neutrally buoyant particles in a pipe flow at low Reynolds number and in dilute regimes. The energy input is kept fixed resulting in a Reynolds number based on the friction velocity around 250. Two different particle radii were used giving a particle-pipe diameter ratio of 0.05 and 0.075. The number of particles is kept constant resulting in a volume fraction of 0.54% and 1.83%, respectively. We investigated Eulerian and Lagrangian statistics along with the stresslet exerted by the fluid on the spherical particles. It was observed that the high particle-to-fluid slip velocity close to the wall corresponds locally to events of high energy dissipation, which are not present in the single-phase flow. The migration of particles from the inner to the outer region of the pipe, the dependence of the stresslet on the particle radial positions and a proxy for the fragmentation rate of the particles computed using the stresslet have been investigated.

Computational study of radial particle migration and stresslet distributions in particle-laden turbulent pipe flow

Toschi F
2018

Abstract

Particle-laden turbulent flows occur in a variety of industrial applications as well as in naturally occurring flows. While the numerical simulation of such flows has seen significant advances in recent years, it still remains a challenging problem. Many studies investigated the rheology of dense suspensions in laminar flows as well as the dynamics of point-particles in turbulence. Here we employ a fully-resolved numerical simulation based on a lattice Boltzmann scheme, to investigate turbulent flow with large neutrally buoyant particles in a pipe flow at low Reynolds number and in dilute regimes. The energy input is kept fixed resulting in a Reynolds number based on the friction velocity around 250. Two different particle radii were used giving a particle-pipe diameter ratio of 0.05 and 0.075. The number of particles is kept constant resulting in a volume fraction of 0.54% and 1.83%, respectively. We investigated Eulerian and Lagrangian statistics along with the stresslet exerted by the fluid on the spherical particles. It was observed that the high particle-to-fluid slip velocity close to the wall corresponds locally to events of high energy dissipation, which are not present in the single-phase flow. The migration of particles from the inner to the outer region of the pipe, the dependence of the stresslet on the particle radial positions and a proxy for the fragmentation rate of the particles computed using the stresslet have been investigated.
2018
Istituto Applicazioni del Calcolo ''Mauro Picone''
Pipe Flow
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/355193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 7
social impact