We present the formulation of a kinetic mapping scheme between the Direct Simulation Monte Carlo (DSMC) and the Lattice Boltzmann Method (LBM) which is at the basis of the hybrid model used to couple the two methods in view of efficiently and accurately simulate isothermal flows characterized by variable rarefaction effects. Owing to the kinetic nature of the LBM, the procedure we propose ensures to accurately couple DSMC and LBM at a larger Kn number than usually done in traditional hybrid DSMC--Navier-Stokes equation models. We show the main steps of the mapping algorithm and illustrate details of the implementation. Good agreement is found between the moments of the single particle distribution function as obtained from the mapping scheme and from independent LBM or DSMC simulations at the grid nodes where the coupling is imposed. We also show results on the application of the hybrid scheme based on a simpler mapping scheme for plane Poiseuille flow at finite Kn number. Potential gains in the computational efficiency assured by the application of the coupling scheme are estimated for the same flow.

DSMC-LBM mapping scheme for rarefied and non-rarefied gas flows

Succi S;Toschi F
2016

Abstract

We present the formulation of a kinetic mapping scheme between the Direct Simulation Monte Carlo (DSMC) and the Lattice Boltzmann Method (LBM) which is at the basis of the hybrid model used to couple the two methods in view of efficiently and accurately simulate isothermal flows characterized by variable rarefaction effects. Owing to the kinetic nature of the LBM, the procedure we propose ensures to accurately couple DSMC and LBM at a larger Kn number than usually done in traditional hybrid DSMC--Navier-Stokes equation models. We show the main steps of the mapping algorithm and illustrate details of the implementation. Good agreement is found between the moments of the single particle distribution function as obtained from the mapping scheme and from independent LBM or DSMC simulations at the grid nodes where the coupling is imposed. We also show results on the application of the hybrid scheme based on a simpler mapping scheme for plane Poiseuille flow at finite Kn number. Potential gains in the computational efficiency assured by the application of the coupling scheme are estimated for the same flow.
2016
Istituto Applicazioni del Calcolo ''Mauro Picone''
Grad's moments method
Hybrid method
Kinetic theory
Non-equilibrium effects
Rarefied gas flows
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/355381
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? ND
social impact