We investigate Poiseuille channel flow through intrinsically curved media, equipped with localized metric perturbations. To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the parameters of the metric perturbations (amplitude, range, and density). We find that the flux depends only on a specific combination of parameters, which we identify as the average metric perturbation, and derive a universal flux law for the Poiseuille flow. For the purpose of this study, we have improved and validated our recently developed lattice Boltzmann model in curved space by considerably reducing discrete lattice effects.

Poiseuille flow in curved spaces

Succi S;
2016

Abstract

We investigate Poiseuille channel flow through intrinsically curved media, equipped with localized metric perturbations. To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the parameters of the metric perturbations (amplitude, range, and density). We find that the flux depends only on a specific combination of parameters, which we identify as the average metric perturbation, and derive a universal flux law for the Poiseuille flow. For the purpose of this study, we have improved and validated our recently developed lattice Boltzmann model in curved space by considerably reducing discrete lattice effects.
2016
Istituto Applicazioni del Calcolo ''Mauro Picone''
SOAP FILM; DYNAMICS; SPHERE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/355395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact