We revisit the theorem stating that it is possible to approximate with any accuracy any real continuous function with a class of relational maps. In other words, relational maps are universal approximators. We review the key works that have proved this property, highlighting their limitations and providing yet another proof that it is not restricted by certain assumptions considered in early proofs. We also show how one can go inversely to approximate these systems with a series of polynomials. This provides us with analytical expressions of these maps which can facilitate a series of important analysis tasks such as modeling and numerical analysis of ill-defined-uncertain complex systems.

A class of universal approximators of real continuous functions revisited

Russo Lucia;
2018

Abstract

We revisit the theorem stating that it is possible to approximate with any accuracy any real continuous function with a class of relational maps. In other words, relational maps are universal approximators. We review the key works that have proved this property, highlighting their limitations and providing yet another proof that it is not restricted by certain assumptions considered in early proofs. We also show how one can go inversely to approximate these systems with a series of polynomials. This provides us with analytical expressions of these maps which can facilitate a series of important analysis tasks such as modeling and numerical analysis of ill-defined-uncertain complex systems.
2018
Istituto di Ricerche sulla Combustione - IRC - Sede Napoli
Approximation of continuous nonlinear functions
Nonlinear systems
Relational maps
Polynomial series approximation
Numerical analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/355581
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact