We analyze the pattern formation due to dislocations under cyclic loading resulting from the Walgraef-Aifantis model. The model consists of a set of partial differential equations of the reaction-diffusion type in the one dimensional finite space with two different diffusion-like coefficients, for the mobile (free to move when the applied resolved shear stress in the slip plane exceeds a certain threshold) and for the immobile (of slow movement or trapped) dislocations. We derive analytically the Turing spatial and Andronov-Hopf temporal instabilities emanating from the homogeneous solutions and construct the complete bifurcation diagram of the far-from-equilibrium spatio-temporal patterns, with respect to the applied stress and the size of the domain. Finally, we analyze the symmetric properties of all branches of both steady and oscillating far-from-equilibrium regimes.

Analytical and numerical bifurcation analysis of dislocation pattern formation of the Walgraef-Aifantis model

Russo Lucia;
2018

Abstract

We analyze the pattern formation due to dislocations under cyclic loading resulting from the Walgraef-Aifantis model. The model consists of a set of partial differential equations of the reaction-diffusion type in the one dimensional finite space with two different diffusion-like coefficients, for the mobile (free to move when the applied resolved shear stress in the slip plane exceeds a certain threshold) and for the immobile (of slow movement or trapped) dislocations. We derive analytically the Turing spatial and Andronov-Hopf temporal instabilities emanating from the homogeneous solutions and construct the complete bifurcation diagram of the far-from-equilibrium spatio-temporal patterns, with respect to the applied stress and the size of the domain. Finally, we analyze the symmetric properties of all branches of both steady and oscillating far-from-equilibrium regimes.
2018
Istituto di Ricerche sulla Combustione - IRC - Sede Napoli
Dislocations
Pattern formation
Turing instabilities
Numerical analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/355584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact