In this work, we consider multiobjective optimization problems with both bound constraints on the variables and general nonlinear constraints, where objective and constraint function values can only be obtained by querying a black box. We define a linesearch-based solution method, and we show that it converges to a set of Pareto stationary points. To this aim, we carry out a theoretical analysis of the problem by only assuming Lipschitz continuity of the functions; more specifically, we give new optimality conditions that take explicitly into account the bound constraints, and prove that the original problem is equivalent to a bound constrained problem obtained by penalizing the nonlinear constraints with an exact merit function. Finally, we present the results of some numerical experiments on bound constrained and nonlinearly constrained problems, showing that our approach is promising when compared to a state-of-The-Art method from the literature.

A derivative-free approach to constrained multiobjective nonsmooth optimization

Liuzzi G;
2016

Abstract

In this work, we consider multiobjective optimization problems with both bound constraints on the variables and general nonlinear constraints, where objective and constraint function values can only be obtained by querying a black box. We define a linesearch-based solution method, and we show that it converges to a set of Pareto stationary points. To this aim, we carry out a theoretical analysis of the problem by only assuming Lipschitz continuity of the functions; more specifically, we give new optimality conditions that take explicitly into account the bound constraints, and prove that the original problem is equivalent to a bound constrained problem obtained by penalizing the nonlinear constraints with an exact merit function. Finally, we present the results of some numerical experiments on bound constrained and nonlinearly constrained problems, showing that our approach is promising when compared to a state-of-The-Art method from the literature.
2016
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
derivative-free multiobjective optimization
Lipschitz optimization
inequality constraints
exact penalty functions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/355842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? ND
social impact