Six different ZnO nanomorphologies were synthesized trough wet chemical routes starting from a water solution of zinc nitrate hexahydrate, obtaining two types of morphologies: bidimensional nanocrystals and nanoparticles aggregates. Powders and films characterizations have been carried out by means of TG-DTA, SEM, and X-ray diffraction analysis. Finally, electrical measurements were performed with the aim to compare conductive properties of the thick films, surface barrier heights and gas sensing features, mainly versus acetone and other VOCs related to the breath gas analysis. Among the different morphologies tested, it turned out that the samples constituted by nanoparticle aggregates exhibited the best performances versus all gases, but especially toward acetone at sub-ppm level.

Enhanced Gas Sensing Properties of Different ZnO 3D Hierarchical Structures

Ambra Fioravanti;Antonino Bonanno;Mauro Mazzocchi;Maria Cristina Carotta;
2017

Abstract

Six different ZnO nanomorphologies were synthesized trough wet chemical routes starting from a water solution of zinc nitrate hexahydrate, obtaining two types of morphologies: bidimensional nanocrystals and nanoparticles aggregates. Powders and films characterizations have been carried out by means of TG-DTA, SEM, and X-ray diffraction analysis. Finally, electrical measurements were performed with the aim to compare conductive properties of the thick films, surface barrier heights and gas sensing features, mainly versus acetone and other VOCs related to the breath gas analysis. Among the different morphologies tested, it turned out that the samples constituted by nanoparticle aggregates exhibited the best performances versus all gases, but especially toward acetone at sub-ppm level.
2017
Istituto per le Macchine Agricole e Movimento Terra - IMAMOTER - Sede Ferrara
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Nanomorphology
Semiconductors Oxides
Thick Film Gas Sensors
Zinc Oxide
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/355954
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact