Crop growth simulation models have been mainly developed to simulate final yield reliably. Thus, a main challenge in these models is the definition of a stable method for expressing the growth of harvested organs (e.g., fruit, seed, tuber, etc.). Generally, two approaches have been used: growth rate analysis of harvested organs [yield growth rate (YGR)] and analysis of harvest index (HI) increase over time (dHI/dt). This work aims to: 1) examine whether YGR and dHI/dt increase linearly over much of growing period, and 2) compare the two growth indices in terms of stability across a number of treatments, in order to identify which is the best indicator of harvest-organ growth. This analysis has already been performed for a large number of field crops, including wheat (Triticum aestivum L.), sunflower (Helianthus annuus L.), soybean [Glycine max L. (Merr.)], and pea (Pisum sativum L.), but it has never been attempted in crops where final yield is not simply seeds. In this study, YGR and dHI/dt performances for tomato (Lycopersicum esculentum Mill.), potato (Solanum tuberosum L.), and eggplant (Solanum melongena L.) were compared using 21, 18, and 4 datasets, respectively. Results indicated that both descriptors of harvest-organ growth increased linearly for most of the growth period, whilst the comparison among the two variables in terms of stability showed that, although a direct statistical test failed, dHI/dt was more suitable to describe harvest-organ growth (smaller coefficient of variability) under a large range of crop management conditions (e.g., irrigation, sowing date, planting density, and water salt concentration).

Analysis of Solanaceae species harvest-organ growth by linear increase in harvest index and harvest-organ growth rate

Moriondo M;
2005

Abstract

Crop growth simulation models have been mainly developed to simulate final yield reliably. Thus, a main challenge in these models is the definition of a stable method for expressing the growth of harvested organs (e.g., fruit, seed, tuber, etc.). Generally, two approaches have been used: growth rate analysis of harvested organs [yield growth rate (YGR)] and analysis of harvest index (HI) increase over time (dHI/dt). This work aims to: 1) examine whether YGR and dHI/dt increase linearly over much of growing period, and 2) compare the two growth indices in terms of stability across a number of treatments, in order to identify which is the best indicator of harvest-organ growth. This analysis has already been performed for a large number of field crops, including wheat (Triticum aestivum L.), sunflower (Helianthus annuus L.), soybean [Glycine max L. (Merr.)], and pea (Pisum sativum L.), but it has never been attempted in crops where final yield is not simply seeds. In this study, YGR and dHI/dt performances for tomato (Lycopersicum esculentum Mill.), potato (Solanum tuberosum L.), and eggplant (Solanum melongena L.) were compared using 21, 18, and 4 datasets, respectively. Results indicated that both descriptors of harvest-organ growth increased linearly for most of the growth period, whilst the comparison among the two variables in terms of stability showed that, although a direct statistical test failed, dHI/dt was more suitable to describe harvest-organ growth (smaller coefficient of variability) under a large range of crop management conditions (e.g., irrigation, sowing date, planting density, and water salt concentration).
2005
Istituto di Biometeorologia - IBIMET - Sede Firenze
Biomass partitioning
Crop growth model
Eggplant
Potato
Tomato
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/356019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact