Crop growth simulation models have been mainly developed to simulate final yield reliably. Thus, a main challenge in these models is the definition of a stable method for expressing the growth of harvested organs (e.g., fruit, seed, tuber, etc.). Generally, two approaches have been used: growth rate analysis of harvested organs [yield growth rate (YGR)] and analysis of harvest index (HI) increase over time (dHI/dt). This work aims to: 1) examine whether YGR and dHI/dt increase linearly over much of growing period, and 2) compare the two growth indices in terms of stability across a number of treatments, in order to identify which is the best indicator of harvest-organ growth. This analysis has already been performed for a large number of field crops, including wheat (Triticum aestivum L.), sunflower (Helianthus annuus L.), soybean [Glycine max L. (Merr.)], and pea (Pisum sativum L.), but it has never been attempted in crops where final yield is not simply seeds. In this study, YGR and dHI/dt performances for tomato (Lycopersicum esculentum Mill.), potato (Solanum tuberosum L.), and eggplant (Solanum melongena L.) were compared using 21, 18, and 4 datasets, respectively. Results indicated that both descriptors of harvest-organ growth increased linearly for most of the growth period, whilst the comparison among the two variables in terms of stability showed that, although a direct statistical test failed, dHI/dt was more suitable to describe harvest-organ growth (smaller coefficient of variability) under a large range of crop management conditions (e.g., irrigation, sowing date, planting density, and water salt concentration).
Analysis of Solanaceae species harvest-organ growth by linear increase in harvest index and harvest-organ growth rate
Moriondo M;
2005
Abstract
Crop growth simulation models have been mainly developed to simulate final yield reliably. Thus, a main challenge in these models is the definition of a stable method for expressing the growth of harvested organs (e.g., fruit, seed, tuber, etc.). Generally, two approaches have been used: growth rate analysis of harvested organs [yield growth rate (YGR)] and analysis of harvest index (HI) increase over time (dHI/dt). This work aims to: 1) examine whether YGR and dHI/dt increase linearly over much of growing period, and 2) compare the two growth indices in terms of stability across a number of treatments, in order to identify which is the best indicator of harvest-organ growth. This analysis has already been performed for a large number of field crops, including wheat (Triticum aestivum L.), sunflower (Helianthus annuus L.), soybean [Glycine max L. (Merr.)], and pea (Pisum sativum L.), but it has never been attempted in crops where final yield is not simply seeds. In this study, YGR and dHI/dt performances for tomato (Lycopersicum esculentum Mill.), potato (Solanum tuberosum L.), and eggplant (Solanum melongena L.) were compared using 21, 18, and 4 datasets, respectively. Results indicated that both descriptors of harvest-organ growth increased linearly for most of the growth period, whilst the comparison among the two variables in terms of stability showed that, although a direct statistical test failed, dHI/dt was more suitable to describe harvest-organ growth (smaller coefficient of variability) under a large range of crop management conditions (e.g., irrigation, sowing date, planting density, and water salt concentration).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


