The analysis of the postural attitude of workers during the interaction with workstation's elements and working environment is essential in the evaluation and prevention of biomechanical overload risk in workplaces. RULA (Rapid Upper Limb Assessment) and REBA (Rapid Entire Body Assessment) are the two easiest methods for postural risk assessment in the workplace. Few studies investigated postural risk in forestry sector with regard to human?machine interaction, in particular manually fed wood-chippers. The aim of this study was to evaluate the postures assumed by an operator during the manual feeding of a wood-chipper, and to compare RULA and REBA, in order to identify the more effective and appropriate method for the assessment of the risk of biomechanical postural overload. The results pointed out several postural issues of the upper limbs, and showed that RULA is a more precautionary method to protect operator's health during the targeted tasks. Implications to improve the human?wood-chipper interaction are discussed.
Risk Assessment for Musculoskeletal Disorders in Forestry: A Comparison between RULA and REBA in the Manual Feeding of a Wood-Chipper
Caffaro F;Cavallo E;
2019
Abstract
The analysis of the postural attitude of workers during the interaction with workstation's elements and working environment is essential in the evaluation and prevention of biomechanical overload risk in workplaces. RULA (Rapid Upper Limb Assessment) and REBA (Rapid Entire Body Assessment) are the two easiest methods for postural risk assessment in the workplace. Few studies investigated postural risk in forestry sector with regard to human?machine interaction, in particular manually fed wood-chippers. The aim of this study was to evaluate the postures assumed by an operator during the manual feeding of a wood-chipper, and to compare RULA and REBA, in order to identify the more effective and appropriate method for the assessment of the risk of biomechanical postural overload. The results pointed out several postural issues of the upper limbs, and showed that RULA is a more precautionary method to protect operator's health during the targeted tasks. Implications to improve the human?wood-chipper interaction are discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.