[object Object]In order to elucidate controversial results emerging in chemical vapor generation (CVG) for trace element determination, we conducted a series of experiments devoted to the identification of intermediates formed by acid hydrolysis of amine-boranes. For the first time, direct analysis in real time coupled with high-resolution mass spectrometry (DART-Orbitrap) was applied for detection of this class of compounds. Mass spectra of both solid amine-boranes and their aqueous solutions (pH ~ 8, no hydrolysis) were acquired for understanding their ionization pathway. Mass spectra of aqueous solutions of t-BuNH2·BH3 and Me2NH·BH3 were acquired under conditions that are employed in CVG (0.017-4.0 mol L-1 HCl, 0.167-0.2 mol L-1 borane reagent). The results disclose a reactivity driven by pH of amine-boranes undergoing hydrolysis. At low acidity, the hydrolysis proceeds according to the currently accepted displacement mechanisms (i.e., R3N·BH3 + H3O+ -> R3NH+ + H2OBH3). At higher acidity, N-tert-butyl, cyclotriborazane, and bis(dimethylamino)boronium were identified, for the first time, during the hydrolysis of t-BuNH2·BH3 and Me2NH·BH3, respectively. Formation of these intermediates was ascribed to a hydrolysis pathway starting with the ionization of the amine-borane, (i.e., R3N·BH3 + H3O+ -> [(H2O)R3NBH2] + + H2). The new evidence explains the anomalous behavior observed in CVG by amine-borane derivatization, and updates the currently accepted mechanisms for the acid hydrolysis of amine-boranes

Application of direct analysis in real time to the study of chemical vapor generation mechanisms: identification of intermediate hydrolysis products of amine-boranes

Onor M;D'Ulivo A
2019

Abstract

[object Object]In order to elucidate controversial results emerging in chemical vapor generation (CVG) for trace element determination, we conducted a series of experiments devoted to the identification of intermediates formed by acid hydrolysis of amine-boranes. For the first time, direct analysis in real time coupled with high-resolution mass spectrometry (DART-Orbitrap) was applied for detection of this class of compounds. Mass spectra of both solid amine-boranes and their aqueous solutions (pH ~ 8, no hydrolysis) were acquired for understanding their ionization pathway. Mass spectra of aqueous solutions of t-BuNH2·BH3 and Me2NH·BH3 were acquired under conditions that are employed in CVG (0.017-4.0 mol L-1 HCl, 0.167-0.2 mol L-1 borane reagent). The results disclose a reactivity driven by pH of amine-boranes undergoing hydrolysis. At low acidity, the hydrolysis proceeds according to the currently accepted displacement mechanisms (i.e., R3N·BH3 + H3O+ -> R3NH+ + H2OBH3). At higher acidity, N-tert-butyl, cyclotriborazane, and bis(dimethylamino)boronium were identified, for the first time, during the hydrolysis of t-BuNH2·BH3 and Me2NH·BH3, respectively. Formation of these intermediates was ascribed to a hydrolysis pathway starting with the ionization of the amine-borane, (i.e., R3N·BH3 + H3O+ -> [(H2O)R3NBH2] + + H2). The new evidence explains the anomalous behavior observed in CVG by amine-borane derivatization, and updates the currently accepted mechanisms for the acid hydrolysis of amine-boranes
2019
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
amine boranes
mechanism
hydrolysis
high resolution mass spectrometry
direct analysis in real time
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/356645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact