We theoretically predict the occurrence of multiple hydrodynamical-like shock phenomena in the propagation of ultrashort intense pulses in a suitably engineered photonic crystal fiber. The shocks are due to the Raman effect, which acts as a nonlocal term favoring their generation in the focusing regime. It is shown that the problem is mapped to shock formation in the presence of a slope and a gravity-like potential. The signature of multiple shocks in cross-correlation frequency-resolved optical gating (XFROG) signals is unveiled.
Multiple hydrodynamical shocks induced by the Raman effect in photonic crystal fibers
C Conti;
2010
Abstract
We theoretically predict the occurrence of multiple hydrodynamical-like shock phenomena in the propagation of ultrashort intense pulses in a suitably engineered photonic crystal fiber. The shocks are due to the Raman effect, which acts as a nonlocal term favoring their generation in the focusing regime. It is shown that the problem is mapped to shock formation in the presence of a slope and a gravity-like potential. The signature of multiple shocks in cross-correlation frequency-resolved optical gating (XFROG) signals is unveiled.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


