From a methodological standpoint, XPS and electrokinetic measurements emerged as the more suitable techniques respectively for the evaluation of hydroxylation degree and surface charge/isoelectric point. Moreover, determination of wettability by blood appeared a specific and crucial test, the results of which are not easily predictable by using other type of tests.

It is well known that composition, electric charge, wettability and roughness of implant surfaces have great influence on their interaction with the biological fluids and tissues, but systematic studies of different materials in the same experimental conditions are still lacking in the scientific literature. The aim of this research is to investigate the correlations between some surface characteristics (wettability, zeta potential and hydroxylation degree) and the biological response (protein adsorption, blood wettability, cell and bacterial adhesion) to some model biomaterials. The resulting knowledge can be applied for the development of future innovative surfaces for implantable biomaterials. Roughness was not considered as a variable because it is a widely explored feature: smooth surfaces prepared by a controlled protocol were compared in order to have no roughness effects. Three oxides (ZrO2, Al2O3, SiO2), three metals (316LSS steel, Ti, Nb) and two polymers (corona treated polystyrene for cell culture and untreated polystyrene for bacteria culture), widely used for biomedical applications, were considered. The surfaces were characterized by contact profilometry, SEM-EDS, XPS, FTIR, zeta potential and wettability with different fluids. Protein adsorption, blood wettability, bacterial and cell adhesion were evaluated in order to investigate the correlations between the surface physiochemical properties and biological responses.

How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials?

Ferrari M;Cirisano F;Gautier di Confiengo G;
2017

Abstract

It is well known that composition, electric charge, wettability and roughness of implant surfaces have great influence on their interaction with the biological fluids and tissues, but systematic studies of different materials in the same experimental conditions are still lacking in the scientific literature. The aim of this research is to investigate the correlations between some surface characteristics (wettability, zeta potential and hydroxylation degree) and the biological response (protein adsorption, blood wettability, cell and bacterial adhesion) to some model biomaterials. The resulting knowledge can be applied for the development of future innovative surfaces for implantable biomaterials. Roughness was not considered as a variable because it is a widely explored feature: smooth surfaces prepared by a controlled protocol were compared in order to have no roughness effects. Three oxides (ZrO2, Al2O3, SiO2), three metals (316LSS steel, Ti, Nb) and two polymers (corona treated polystyrene for cell culture and untreated polystyrene for bacteria culture), widely used for biomedical applications, were considered. The surfaces were characterized by contact profilometry, SEM-EDS, XPS, FTIR, zeta potential and wettability with different fluids. Protein adsorption, blood wettability, bacterial and cell adhesion were evaluated in order to investigate the correlations between the surface physiochemical properties and biological responses.
2017
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto per le Macchine Agricole e Movimento Terra - IMAMOTER - Sede Ferrara
From a methodological standpoint, XPS and electrokinetic measurements emerged as the more suitable techniques respectively for the evaluation of hydroxylation degree and surface charge/isoelectric point. Moreover, determination of wettability by blood appeared a specific and crucial test, the results of which are not easily predictable by using other type of tests.
Wettability
Zeta potential
Hydroxylation
Protein adsorption
Cell adhesion
Bacterial adhesion
Blood wettability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/357000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 116
  • ???jsp.display-item.citation.isi??? ND
social impact