The development of plasmonic and metamaterial devices requires the research of high-performance materials alternative to standard noble metals. Renewed as a refractory stable compound for durable coatings, titanium nitride has recently been proposed as an efficient plasmonic material. Here, by using a first-principles approach, we investigate the plasmon dispersion relations of TiN bulk and we predict the effect of pressure on its optoelectronic properties. Our results explain the main features of TiN in the visible range and prove a universal scaling law which relates its mechanical and plasmonic properties as a function of pressure. Finally, we address the formation and stability of surface-plasmon polaritons at different TiN-dielectric interfaces proposed by recent experiments. The unusual combination of plasmonics and refractory features paves the way for the realization of plasmonic devices able to work at conditions not sustainable by the usual noble metals.

Plasmonic properties of refractory titanium nitride

Catellani A;Calzolari A
2017

Abstract

The development of plasmonic and metamaterial devices requires the research of high-performance materials alternative to standard noble metals. Renewed as a refractory stable compound for durable coatings, titanium nitride has recently been proposed as an efficient plasmonic material. Here, by using a first-principles approach, we investigate the plasmon dispersion relations of TiN bulk and we predict the effect of pressure on its optoelectronic properties. Our results explain the main features of TiN in the visible range and prove a universal scaling law which relates its mechanical and plasmonic properties as a function of pressure. Finally, we address the formation and stability of surface-plasmon polaritons at different TiN-dielectric interfaces proposed by recent experiments. The unusual combination of plasmonics and refractory features paves the way for the realization of plasmonic devices able to work at conditions not sustainable by the usual noble metals.
2017
Istituto Nanoscienze - NANO
plasmonic
titanium nitride
dft
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/357056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? ND
social impact