Abstract.: Gyrotactic algae are bottom heavy, motile cells whose swimming direction is determined by a balance between a buoyancy torque directing them upwards and fluid velocity gradients. Gyrotaxis has, in recent years, become a paradigmatic model for phytoplankton motility in flows. The essential attractiveness of this peculiar form of motility is the availability of a mechanistic description which, despite its simplicity, revealed predictive, rich in phenomenology, easily complemented to include the effects of shape, feedback on the fluid and stochasticity (e.g., in cell orientation). In this review we consider recent theoretical, numerical and experimental results to discuss how, depending on flow properties, gyrotaxis can produce inhomogeneous phytoplankton distributions on a wide range of scales, from millimeters to kilometers, in both laminar and turbulent flows. In particular, we focus on the phenomenon of gyrotactic trapping in nonlinear shear flows and in fractal clustering in turbulent flows. We shall demonstrate the usefulness of ideas and tools borrowed from dynamical systems theory in explaining and interpreting these phenomena. Graphical abstract: [Figure not available: see fulltext.].

Gyrotactic phytoplankton in laminar and turbulent flows: A dynamical systems approach

Cencini M.;
2019

Abstract

Abstract.: Gyrotactic algae are bottom heavy, motile cells whose swimming direction is determined by a balance between a buoyancy torque directing them upwards and fluid velocity gradients. Gyrotaxis has, in recent years, become a paradigmatic model for phytoplankton motility in flows. The essential attractiveness of this peculiar form of motility is the availability of a mechanistic description which, despite its simplicity, revealed predictive, rich in phenomenology, easily complemented to include the effects of shape, feedback on the fluid and stochasticity (e.g., in cell orientation). In this review we consider recent theoretical, numerical and experimental results to discuss how, depending on flow properties, gyrotaxis can produce inhomogeneous phytoplankton distributions on a wide range of scales, from millimeters to kilometers, in both laminar and turbulent flows. In particular, we focus on the phenomenon of gyrotactic trapping in nonlinear shear flows and in fractal clustering in turbulent flows. We shall demonstrate the usefulness of ideas and tools borrowed from dynamical systems theory in explaining and interpreting these phenomena. Graphical abstract: [Figure not available: see fulltext.].
2019
Istituto dei Sistemi Complessi - ISC
Flowing Matter
Problems and Applications
File in questo prodotto:
File Dimensione Formato  
prod_401171-doc_139378.pdf

solo utenti autorizzati

Descrizione: Gyrotactic phytoplankton in laminar and turbulent flows
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/357137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact