Nanomicropatterning of polymers and direct printing methods are becoming prominent nanofabrication tools in multiple fields of application from medicine to aerospace technology. All the available processes are very expensive, requiring complex equipment and highly trained staff. Often the desired pattern cannot be realized easily and the method used for the fabrication would be a direct consequence of the material of interest, with a significant limitation in case of highly viscous polymers. We propose a very simple, low cost method that exploits the pyroelectrohydrodynamic effect for patterning polymer fibers with high resolution. In particular, we focus on the fabrication of nanocomposite polymer fiber with good mechanical and electrical properties. We start from studying the instability phase of patterning for low concentrated polymeric solutions and discuss the condition of continuous printing. Moreover, the same technique is applied for the patterning of footpath as master for the realization of microfluidic chips. The simplicity of the method proposed, associated with the high-resolution patterning achievable at nanoscale, suggest innovative and widespread uses of general purpose for in situ and noninvasive instruments in different fields of research and business cases.

From electrohydrodynamic instabilities of liquids to the high-resolution ink-jet printing through pyroelectric driving power

Coppola S;Nasti G;Vespini V;Grilli S;Russo P;Ferraro P
2018

Abstract

Nanomicropatterning of polymers and direct printing methods are becoming prominent nanofabrication tools in multiple fields of application from medicine to aerospace technology. All the available processes are very expensive, requiring complex equipment and highly trained staff. Often the desired pattern cannot be realized easily and the method used for the fabrication would be a direct consequence of the material of interest, with a significant limitation in case of highly viscous polymers. We propose a very simple, low cost method that exploits the pyroelectrohydrodynamic effect for patterning polymer fibers with high resolution. In particular, we focus on the fabrication of nanocomposite polymer fiber with good mechanical and electrical properties. We start from studying the instability phase of patterning for low concentrated polymeric solutions and discuss the condition of continuous printing. Moreover, the same technique is applied for the patterning of footpath as master for the realization of microfluidic chips. The simplicity of the method proposed, associated with the high-resolution patterning achievable at nanoscale, suggest innovative and widespread uses of general purpose for in situ and noninvasive instruments in different fields of research and business cases.
2018
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
High-resolution ink-jet printing
Eletrohydrodynamic instabilities
Pyroelectric power
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/357335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact