A composite system made of poly(l-lactic acid) (PLLA) and graphene nanoplatelets (GNP) was investigated by Raman and FTIR spectroscopy. Two compositions were prepared and characterized in comparison to the pristine polymer: they contained, respectively, 0.25 and 0.75 wt% of the nanofiller. The study was focused on the morphological properties of the system, and, in particular, on the level of dispersion and the homogeneity obtainable with the adopted preparation protocol. Furthermore, the possible molecular interactions taking place between the nanofiller and the polymer matrix were considered. Both the above issues were investigated by confocal Raman spectroscopy, with the aid of first-principle calculations to strengthen the spectral interpretation. Finally, the effect of the nanofiller on water diffusion was investigated by time-resolved FTIR spectroscopy, which provided accurate equilibrium and kinetic data, as well as molecular level information on the penetrant-to-substrate interactions. It was found that, for a 0.25 wt% composition, the adopted preparation protocol allowed us to achieve a dispersion at the level of single nanoplatelets, while for a 0.75 wt% composition, the GNP's aggregate into a co-continuous phase. PLLA/GNP interactions were detected by Raman spectroscopy, producing a detectable perturbation of the PLLA conformational equilibrium. Both the diffusivities and the equilibrium water uptake were found to decrease significantly by increasing the filler content.

Morphology, Molecular Interactions and H2O Diffusion in a Poly(lactic-acid)/Graphene Composite: A Vibrational Spectroscopy Study

P Musto;P La Manna;F Cimino;P Russo
2019

Abstract

A composite system made of poly(l-lactic acid) (PLLA) and graphene nanoplatelets (GNP) was investigated by Raman and FTIR spectroscopy. Two compositions were prepared and characterized in comparison to the pristine polymer: they contained, respectively, 0.25 and 0.75 wt% of the nanofiller. The study was focused on the morphological properties of the system, and, in particular, on the level of dispersion and the homogeneity obtainable with the adopted preparation protocol. Furthermore, the possible molecular interactions taking place between the nanofiller and the polymer matrix were considered. Both the above issues were investigated by confocal Raman spectroscopy, with the aid of first-principle calculations to strengthen the spectral interpretation. Finally, the effect of the nanofiller on water diffusion was investigated by time-resolved FTIR spectroscopy, which provided accurate equilibrium and kinetic data, as well as molecular level information on the penetrant-to-substrate interactions. It was found that, for a 0.25 wt% composition, the adopted preparation protocol allowed us to achieve a dispersion at the level of single nanoplatelets, while for a 0.75 wt% composition, the GNP's aggregate into a co-continuous phase. PLLA/GNP interactions were detected by Raman spectroscopy, producing a detectable perturbation of the PLLA conformational equilibrium. Both the diffusivities and the equilibrium water uptake were found to decrease significantly by increasing the filler content.
2019
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Poly(lactic acid)
Graphene
Raman
FTIR
Diffusion
File in questo prodotto:
File Dimensione Formato  
prod_392505-doc_174422.pdf

solo utenti autorizzati

Descrizione: Morphology, Molecular Interactions and H2O Diffusion in a Poly(lactic-acid)/Graphene Composite: A Vibrational Spectroscopy Study
Tipologia: Versione Editoriale (PDF)
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/357337
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact