We provide an integral estimate for a non-divergence (non-variational) form second order elliptic equation a(ij)u(ij) = u(p), u >= 0, p is an element of [0, 1), with bounded discontinuous coefficients a(ij) having small BMO norm. We consider the simplest discontinuity of the form x circle times x|x|(-2) at the origin. As an application we show that the free boundary corresponding to the obstacle problem (i.e. when p = 0) cannot be smooth at the points of discontinuity of a(ij) (x).

Classification of irregular free boundary points for non-divergence type equations with discontinuous coefficients

E Valdinoci
2018

Abstract

We provide an integral estimate for a non-divergence (non-variational) form second order elliptic equation a(ij)u(ij) = u(p), u >= 0, p is an element of [0, 1), with bounded discontinuous coefficients a(ij) having small BMO norm. We consider the simplest discontinuity of the form x circle times x|x|(-2) at the origin. As an application we show that the free boundary corresponding to the obstacle problem (i.e. when p = 0) cannot be smooth at the points of discontinuity of a(ij) (x).
2018
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Free boundary; blow-up sequences; non-divergence operators; monotonicity formulae
File in questo prodotto:
File Dimensione Formato  
prod_394773-doc_155401.pdf

accesso aperto

Descrizione: Classification of irregular free boundary points for non-divergence type equations with discontinuous coefficients
Tipologia: Versione Editoriale (PDF)
Dimensione 375.34 kB
Formato Adobe PDF
375.34 kB Adobe PDF Visualizza/Apri
prod_394773-doc_155402.pdf

solo utenti autorizzati

Descrizione: Classification of irregular free boundary points for non-divergence type equations with discontinuous coefficients
Tipologia: Versione Editoriale (PDF)
Dimensione 413.91 kB
Formato Adobe PDF
413.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/357350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact