We provide an integral estimate for a non-divergence (non-variational) form second order elliptic equation a(ij)u(ij) = u(p), u >= 0, p is an element of [0, 1), with bounded discontinuous coefficients a(ij) having small BMO norm. We consider the simplest discontinuity of the form x circle times x|x|(-2) at the origin. As an application we show that the free boundary corresponding to the obstacle problem (i.e. when p = 0) cannot be smooth at the points of discontinuity of a(ij) (x).
Classification of irregular free boundary points for non-divergence type equations with discontinuous coefficients
E Valdinoci
2018
Abstract
We provide an integral estimate for a non-divergence (non-variational) form second order elliptic equation a(ij)u(ij) = u(p), u >= 0, p is an element of [0, 1), with bounded discontinuous coefficients a(ij) having small BMO norm. We consider the simplest discontinuity of the form x circle times x|x|(-2) at the origin. As an application we show that the free boundary corresponding to the obstacle problem (i.e. when p = 0) cannot be smooth at the points of discontinuity of a(ij) (x).File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_394773-doc_155401.pdf
accesso aperto
Descrizione: Classification of irregular free boundary points for non-divergence type equations with discontinuous coefficients
Tipologia:
Versione Editoriale (PDF)
Dimensione
375.34 kB
Formato
Adobe PDF
|
375.34 kB | Adobe PDF | Visualizza/Apri |
|
prod_394773-doc_155402.pdf
solo utenti autorizzati
Descrizione: Classification of irregular free boundary points for non-divergence type equations with discontinuous coefficients
Tipologia:
Versione Editoriale (PDF)
Dimensione
413.91 kB
Formato
Adobe PDF
|
413.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


