We consider a one-phase nonlocal free boundary problem obtained by the superposition of a fractional Dirichlet energy plus a nonlocal perimeter functional. We prove that the minimizers are Hölder continuous and the free boundary has positive density from both sides.For this, we also introduce a new notion of fractional harmonic replacement in the extended variables and we study its basic properties.

Continuity and density results for a one-phase nonlocal free boundary problem

E Valdinoci
2017

Abstract

We consider a one-phase nonlocal free boundary problem obtained by the superposition of a fractional Dirichlet energy plus a nonlocal perimeter functional. We prove that the minimizers are Hölder continuous and the free boundary has positive density from both sides.For this, we also introduce a new notion of fractional harmonic replacement in the extended variables and we study its basic properties.
2017
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Free boundary problems; Nonlocal minimal surfaces; Fractional operators; Regularity theory; Fractional harmonic replacement
File in questo prodotto:
File Dimensione Formato  
prod_367473-doc_130842.pdf

solo utenti autorizzati

Descrizione: Continuity and density results for a one-phase nonlocal free boundary problem
Tipologia: Versione Editoriale (PDF)
Dimensione 596.93 kB
Formato Adobe PDF
596.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/357415
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact