Quenched disorder is known to play a relevant role in dynamical processes and phase transitions. Its effects on the dynamics of complex networks have hardly been studied. Aimed at filling this gap, we analyze the contact process, i.e., the simplest propagation model, with quenched disorder on complex networks. We find Griffiths phases and other rare-region effects, leading rather generically to anomalously slow (algebraic, logarithmic, ?) relaxation, on ErdQs-Rényi networks. Similar effects are predicted to exist for other topologies with a finite percolation threshold. More surprisingly, we find that Griffiths phases can also emerge in the absence of quenched disorder, as a consequence of topological heterogeneity in networks with finite topological dimension. These results have a broad spectrum of implications for propagation phenomena and other dynamical processes on networks.
Griffiths Phases on Complex Networks
Claudio Castellano;
2010
Abstract
Quenched disorder is known to play a relevant role in dynamical processes and phase transitions. Its effects on the dynamics of complex networks have hardly been studied. Aimed at filling this gap, we analyze the contact process, i.e., the simplest propagation model, with quenched disorder on complex networks. We find Griffiths phases and other rare-region effects, leading rather generically to anomalously slow (algebraic, logarithmic, ?) relaxation, on ErdQs-Rényi networks. Similar effects are predicted to exist for other topologies with a finite percolation threshold. More surprisingly, we find that Griffiths phases can also emerge in the absence of quenched disorder, as a consequence of topological heterogeneity in networks with finite topological dimension. These results have a broad spectrum of implications for propagation phenomena and other dynamical processes on networks.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_57662-doc_28493.pdf
solo utenti autorizzati
Descrizione: Griffiths Phases on Complex Networks
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
390.51 kB
Formato
Adobe PDF
|
390.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


