In this work, the influence of graphene oxide (GO) doped Poly(3,4 ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) thin nanocomposite on an indium-tin-oxide (ITO) anode, as hole transport layer (HTL) in perovskite solar cells, was investigated. Different concentrations of GO were added into the PEDOT:PSS in order to enhance its conductivity. In particular, the influence of GO content on the rheological and thermal properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/GO nanocomposites was initially examined. The GO filler was prepared by using modified Hummers method and dispersed into PEDOT:PSS in different quantity (ranging from 0.05 to 0.25%wt/wt). The obtained nanocomposite solutions were analyzed by rheological characterizations in order to evaluate the influence of the GO filler on the viscosity of the PEDOT:PSS matrix. The wettability of solutions was evaluated by Contact Angle (CA) measurements. The quality of GO dispersion into the polymer matrix was studied using Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Thermal characterizations (DSC and TGA) were, finally, applied on nanocomposite films in order to evaluate thermal stability of the films as well as to indirectly comprehend the GO influence on PEDOT:PSS-water links.

Rheological and physical characterization of PEDOT: PSS/graphene oxide nanocomposites for perovskite solar cells

Colella Silvia;Colella Silvia;Listorti Andrea;Listorti Andrea;Rizzo Aurora;Kovtun Alessandro;Dell'Elce Simone;Liscio Andrea;Liscio Andrea;
2017

Abstract

In this work, the influence of graphene oxide (GO) doped Poly(3,4 ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) thin nanocomposite on an indium-tin-oxide (ITO) anode, as hole transport layer (HTL) in perovskite solar cells, was investigated. Different concentrations of GO were added into the PEDOT:PSS in order to enhance its conductivity. In particular, the influence of GO content on the rheological and thermal properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/GO nanocomposites was initially examined. The GO filler was prepared by using modified Hummers method and dispersed into PEDOT:PSS in different quantity (ranging from 0.05 to 0.25%wt/wt). The obtained nanocomposite solutions were analyzed by rheological characterizations in order to evaluate the influence of the GO filler on the viscosity of the PEDOT:PSS matrix. The wettability of solutions was evaluated by Contact Angle (CA) measurements. The quality of GO dispersion into the polymer matrix was studied using Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Thermal characterizations (DSC and TGA) were, finally, applied on nanocomposite films in order to evaluate thermal stability of the films as well as to indirectly comprehend the GO influence on PEDOT:PSS-water links.
2017
Istituto di Nanotecnologia - NANOTEC
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Istituto dei Sistemi Complessi - ISC
graphene oxide
nanocomposites
rheology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/357562
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? ND
social impact