We report the results of molecular dynamics simulations of an off-lattice protein model featuring a physical force-field and amino-acid sequence. We show that localized modes of nonlinear origin, discrete breathers (DBs), emerge naturally as continuations of a subset of high-frequency normal modes residing at specific sites dictated by the native fold. DBs are time-periodic, space-localized vibrational modes that exist generically in nonlinear discrete systems and are known for their resilience and ability to concentrate energy for long times. In the case of the small ?-barrel structure that we consider, DB-mediated localization occurs on the turns connecting the strands. At high energies, DBs stabilize the structure by concentrating energy on a few sites, while their collapse marks the onset of large-amplitude fluctuations of the protein. Furthermore, we show how breathers develop as energy-accumulating centres following perturbations even at distant locations, thus mediating efficient and irreversible energy transfers. Remarkably, due to the presence of angular potentials, the breather induces a local static distortion of the native fold. Altogether, the combination of these two nonlinear effects may provide a ready means for remotely controlling local conformational changes in proteins.

Discrete Breathers in a Realistic Coarse-Grained Model of Proteins

Stefano Luccioli;Stefano Lepri;Alessandro Torcini
2011

Abstract

We report the results of molecular dynamics simulations of an off-lattice protein model featuring a physical force-field and amino-acid sequence. We show that localized modes of nonlinear origin, discrete breathers (DBs), emerge naturally as continuations of a subset of high-frequency normal modes residing at specific sites dictated by the native fold. DBs are time-periodic, space-localized vibrational modes that exist generically in nonlinear discrete systems and are known for their resilience and ability to concentrate energy for long times. In the case of the small ?-barrel structure that we consider, DB-mediated localization occurs on the turns connecting the strands. At high energies, DBs stabilize the structure by concentrating energy on a few sites, while their collapse marks the onset of large-amplitude fluctuations of the protein. Furthermore, we show how breathers develop as energy-accumulating centres following perturbations even at distant locations, thus mediating efficient and irreversible energy transfers. Remarkably, due to the presence of angular potentials, the breather induces a local static distortion of the native fold. Altogether, the combination of these two nonlinear effects may provide a ready means for remotely controlling local conformational changes in proteins.
2011
Istituto dei Sistemi Complessi - ISC
Proteins
Folding: thermodynamics
statistical mechanics
models
and pathways
File in questo prodotto:
File Dimensione Formato  
prod_57680-doc_1250.pdf

solo utenti autorizzati

Descrizione: Discrete Breathers in a Realistic Coarse-Grained Model of Proteins
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/35765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 18
social impact