The goal of this research is to better address the problems related to the widespread presence of pesticides in the environment. Despite the unquestionable utility of the pesticides against various pests in the agricultural field, most pesticides and the corresponding pesticide residues are toxic to the environment and hazardous to human health. The recent literature on organophosphate compounds emphasises a clear correlation between their use and the occurrence of disorders in the nervous system, especially in children. The conventional systems for the detection and analysis of these compounds are expensive, time-consuming and require highly specialised operators; moreover, no online automated screening systems are yet available, that would allow the identification and quantification of the presence of these chemicals in samples from industrial sectors such as the food industry. Esterase-based biosensors represent a viable alternative to this problem. In this fellowship programme, we aim to develop a robust and sensitive methodology that enables the screening of toxic compounds using a streamlined process, using an automated robotic system to achieve a continuous monitoring for risk assessment of pesticides. (c) 2018 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Development of an automated multienzymatic biosensor forrisk assessment of pesticide contamination in water and food

Febbraio Ferdinando
2018

Abstract

The goal of this research is to better address the problems related to the widespread presence of pesticides in the environment. Despite the unquestionable utility of the pesticides against various pests in the agricultural field, most pesticides and the corresponding pesticide residues are toxic to the environment and hazardous to human health. The recent literature on organophosphate compounds emphasises a clear correlation between their use and the occurrence of disorders in the nervous system, especially in children. The conventional systems for the detection and analysis of these compounds are expensive, time-consuming and require highly specialised operators; moreover, no online automated screening systems are yet available, that would allow the identification and quantification of the presence of these chemicals in samples from industrial sectors such as the food industry. Esterase-based biosensors represent a viable alternative to this problem. In this fellowship programme, we aim to develop a robust and sensitive methodology that enables the screening of toxic compounds using a streamlined process, using an automated robotic system to achieve a continuous monitoring for risk assessment of pesticides. (c) 2018 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.
2018
Istituto di Biochimica delle Proteine - IBP - Sede Napoli
organophosphate pesticides
biosensing device
thermophilic esterase
environmental monitoring
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/357653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact