We present quantum Lattice Boltzmann simulations of the Dirac equation for quantum-relativistic particles with random mass. By choosing zero-average random mass fluctuation, the simulations show evidence of localization and ultra-slow Sinai diffusion, due to the interference of oppositely propagating branches of the quantum wavefunction which result from random sign changes of the mass around a zero-mean. The present results indicate that the quantum lattice Boltzmann scheme may offer a viable tool for the numerical simulation of quantum-relativistic transport phenomena in topological materials.

Numerical Evidence of Sinai Diffusion of Random-Mass Dirac Particles

Succi Sauro
2018

Abstract

We present quantum Lattice Boltzmann simulations of the Dirac equation for quantum-relativistic particles with random mass. By choosing zero-average random mass fluctuation, the simulations show evidence of localization and ultra-slow Sinai diffusion, due to the interference of oppositely propagating branches of the quantum wavefunction which result from random sign changes of the mass around a zero-mean. The present results indicate that the quantum lattice Boltzmann scheme may offer a viable tool for the numerical simulation of quantum-relativistic transport phenomena in topological materials.
2018
Istituto Applicazioni del Calcolo ''Mauro Picone''
Si
Anderson localization
QLB method
Dirac equation
random mass
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/357660
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact