Olivine-type LiFePO4 is nowadays one of the most important cathode materials of choice for highenergy lithium ion batteries. Its intrinsic defectivity, and chiefly the so-called lithium iron anti-site, is one of the most critical issues when envisaging electrochemical applications. This paper reports a combined diffractometric (Synchrotron Radiation XRD with Rietveld and PDF analyses) and spectroscopic (Moessbauer) approach able to give a thorough characterization of the material defectivity. Such analytical procedure has been applied to a sample prepared following an innovative microwave-assisted hydrothermal synthesis route that, in a few minutes, allowed us to obtain a well crystallized material. PDF analysis, which is applied for the first time to this type of battery material, reveals the presence of disorder possibly due to Li/Fe exchange or to a local symmetry lowering. A 5% amount of iron on the lithium site has been detected both by PDF as well as by Moessbauer spectroscopy, which revealed a small percentage of Fe3+ on the regular sites.

Pair distribution function analysis and Moessbauer study of defects in microwave-hydrothermal LiFePO4

Marco Lantieri;
2012

Abstract

Olivine-type LiFePO4 is nowadays one of the most important cathode materials of choice for highenergy lithium ion batteries. Its intrinsic defectivity, and chiefly the so-called lithium iron anti-site, is one of the most critical issues when envisaging electrochemical applications. This paper reports a combined diffractometric (Synchrotron Radiation XRD with Rietveld and PDF analyses) and spectroscopic (Moessbauer) approach able to give a thorough characterization of the material defectivity. Such analytical procedure has been applied to a sample prepared following an innovative microwave-assisted hydrothermal synthesis route that, in a few minutes, allowed us to obtain a well crystallized material. PDF analysis, which is applied for the first time to this type of battery material, reveals the presence of disorder possibly due to Li/Fe exchange or to a local symmetry lowering. A 5% amount of iron on the lithium site has been detected both by PDF as well as by Moessbauer spectroscopy, which revealed a small percentage of Fe3+ on the regular sites.
2012
Istituto dei Sistemi Complessi - ISC
Cathode materials
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/35768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact