We recently discovered that beta-aminobutyric acid (BABA), a molecule known for its ability to prime defences in plants, is a natural plant metabolite. However, the role played by endogenous BABA in plants is currently unknown. In this study we investigated the systemic accumulation of BABA during pathogen infection, levels of BABA during plant growth and development and analysed mutants possibly involved in BABA transport or regulation. BABA was quantified by LC-MS using an improved method adapted from a previously published protocol. Systemic accumulation of BABA was determined by analysing non-infected leaves and roots after localised infections with Plectosphaerella cucumerina or Pseudomonas syringae pv. tomato (Pst) DC3000 avrRpt2. The levels of BABA were also quantified in different plant tissues and organs during normal plant growth, and in leaves during senescence. Mutants affecting amino acid transport (aap6, aap3, prot1 and gat1), beta-aminobutyric acid levels (pop2) and senescence/defence (cpr5-2) were analysed. BABA was found to accumulate only locally after bacterial or fungal infection, with no detectable increase in non-infected systemic plant parts. In leaves, BABA content increased during natural and induced senescence. Reproductive organs had the highest levels of BABA, and the mutant cpr5-2 produced constitutively high levels of BABA. Synthetic BABA is highly mobile in the receiving plant, whereas endogenous BABA appears to be produced and accumulated locally in a tissue-specific way. We discuss a possible role for BABA in age-related resistance and propose a comprehensive model for endogenous and synthetic BABA.

Accumulation patterns of endogenous beta-aminobutyric acid during plant development and defence in Arabidopsis thaliana

Baccelli I
2019

Abstract

We recently discovered that beta-aminobutyric acid (BABA), a molecule known for its ability to prime defences in plants, is a natural plant metabolite. However, the role played by endogenous BABA in plants is currently unknown. In this study we investigated the systemic accumulation of BABA during pathogen infection, levels of BABA during plant growth and development and analysed mutants possibly involved in BABA transport or regulation. BABA was quantified by LC-MS using an improved method adapted from a previously published protocol. Systemic accumulation of BABA was determined by analysing non-infected leaves and roots after localised infections with Plectosphaerella cucumerina or Pseudomonas syringae pv. tomato (Pst) DC3000 avrRpt2. The levels of BABA were also quantified in different plant tissues and organs during normal plant growth, and in leaves during senescence. Mutants affecting amino acid transport (aap6, aap3, prot1 and gat1), beta-aminobutyric acid levels (pop2) and senescence/defence (cpr5-2) were analysed. BABA was found to accumulate only locally after bacterial or fungal infection, with no detectable increase in non-infected systemic plant parts. In leaves, BABA content increased during natural and induced senescence. Reproductive organs had the highest levels of BABA, and the mutant cpr5-2 produced constitutively high levels of BABA. Synthetic BABA is highly mobile in the receiving plant, whereas endogenous BABA appears to be produced and accumulated locally in a tissue-specific way. We discuss a possible role for BABA in age-related resistance and propose a comprehensive model for endogenous and synthetic BABA.
2019
Istituto per la Protezione Sostenibile delle Piante - IPSP
age-related resistance
BABA
cpr5
defence
pathogen infection
priming
senescence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/357766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact