In this work we present a methodology for the mapping of Snow Water Equivalent (SWE) temporal variations based on the Synthetic Aperture Radar (SAR) Interferometry technique and Sentinel-1 data. The shift in the interferometric phase caused by the refraction of the microwave signal penetrating the snow layer is isolated and exploited to generate maps of temporal variation of SWE from coherent SAR interferograms. The main advantage of the proposed methodology with respect to those based on the inversion of microwave SAR backscattering models is its simplicity and the reduced number of required in-situ SWE measurements. The maps, updated up to every 6 days, can attain a spatial resolution up to 20 m with sub-centimetre ASWE measurement accuracy in any weather and sun illumination condition. We present results obtained using the proposed methodology over a study area in Finland. These results are compared with in-situ measurements of ASWE, showing a reasonable match with a mean accuracy of about 6 mm.

On the estimation of temporal changes of snow water equivalent by spaceborne SAR interferometry: a new application for the Sentinel-1 mission

Nico Giovanni;
2019

Abstract

In this work we present a methodology for the mapping of Snow Water Equivalent (SWE) temporal variations based on the Synthetic Aperture Radar (SAR) Interferometry technique and Sentinel-1 data. The shift in the interferometric phase caused by the refraction of the microwave signal penetrating the snow layer is isolated and exploited to generate maps of temporal variation of SWE from coherent SAR interferograms. The main advantage of the proposed methodology with respect to those based on the inversion of microwave SAR backscattering models is its simplicity and the reduced number of required in-situ SWE measurements. The maps, updated up to every 6 days, can attain a spatial resolution up to 20 m with sub-centimetre ASWE measurement accuracy in any weather and sun illumination condition. We present results obtained using the proposed methodology over a study area in Finland. These results are compared with in-situ measurements of ASWE, showing a reasonable match with a mean accuracy of about 6 mm.
2019
Istituto Applicazioni del Calcolo ''Mauro Picone''
Snow Water Equivalent (SWE)
Synthetic Aperture Radar (SAR)
SAR interferometry (InSAR)
Sentinel-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/357852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact