Rett syndrome (RTT) is an X-linked neurodevelopmental disorder affecting 1 in 10,000 live female births. Changes in microbiota composition, as observed in other neurological disorders such as autism spectrum disorders, may account for several symptoms typically associated with RTT. We studied the relationship between disease phenotypes and microbiome by analyzing diet, gut microbiota, and short-chain fatty acid (SCFA) production. We enrolled eight RTT patients and 10 age- and sex-matched healthy women, all without dietary restrictions. The microbiota was characterized by 16S rRNA gene sequencing, and SCFAs concentration was determined by gas chromatographic analysis. The RTT microbiota showed a lower diversity, an enrichment in Bacteroidaceae, Clostridium spp., and Sutterella spp., and a slight depletion in Ruminococcaceae. Fecal SCFA concentrations were similar, but RTT samples showed slightly higher concentrations of butyrate and propionate, and significant higher levels in branched-chain fatty acids. Daily caloric intake was similar in the two groups, but macronutrient analysis showed a higher protein content in RTT diets. Microbial function prediction suggested in RTT subjects an increased number of microbial genes encoding for propionate and butyrate, and amino acid metabolism. A full understanding of these critical features could offer new, specific strategies for managing RTT-associated symptoms, such as dietary intervention or pre/probiotic supplementation.

Rett Syndrome: A Focus on Gut Microbiota

Severgnini Marco;
2017

Abstract

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder affecting 1 in 10,000 live female births. Changes in microbiota composition, as observed in other neurological disorders such as autism spectrum disorders, may account for several symptoms typically associated with RTT. We studied the relationship between disease phenotypes and microbiome by analyzing diet, gut microbiota, and short-chain fatty acid (SCFA) production. We enrolled eight RTT patients and 10 age- and sex-matched healthy women, all without dietary restrictions. The microbiota was characterized by 16S rRNA gene sequencing, and SCFAs concentration was determined by gas chromatographic analysis. The RTT microbiota showed a lower diversity, an enrichment in Bacteroidaceae, Clostridium spp., and Sutterella spp., and a slight depletion in Ruminococcaceae. Fecal SCFA concentrations were similar, but RTT samples showed slightly higher concentrations of butyrate and propionate, and significant higher levels in branched-chain fatty acids. Daily caloric intake was similar in the two groups, but macronutrient analysis showed a higher protein content in RTT diets. Microbial function prediction suggested in RTT subjects an increased number of microbial genes encoding for propionate and butyrate, and amino acid metabolism. A full understanding of these critical features could offer new, specific strategies for managing RTT-associated symptoms, such as dietary intervention or pre/probiotic supplementation.
2017
Istituto di Tecnologie Biomediche - ITB
Rett syndrome
microbiota
short-chain fatty acids
diet
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/358013
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 66
social impact