Enantiopure 2-methyl-3-substituted tetrahydrofurans are key precursors of several biologically active products (drugs, flavors, and agrochemicals). Thus, a stereocontrolled and efficient methodology for the obtainment of these synthons is highly desirable. We exploited a two-step multienzymatic stereoselective cascade reduction of alpha-bromo-alpha,beta-unsaturated ketones to give the corresponding bromohydrins in good yields, with high ee and de values. The cascade process is catalyzed by an ene-reductase and an alcohol dehydrogenase. Further manipulations of these bromohydrins, by two diastereodivergent routes, allowed the preparation of the tetrahydrofuran synthons. One route is based on a lipase catalyzed cleavage of the protecting group. The second route is characterized by a camphor sulfonic acid mediated isomerization of a beta-hydroxyepoxide to give the tetrahydrofuran-2-ol. Finally, the synthesis of the most odorous and pleasant stereoisomer of the roasted meat aroma, i.e., (2S,3R)-2-methyl-3-thioacetate tetrahydrofuran, is reported as well.
Exploitation of a Multienzymatic Stereoselective Cascade Process in the Synthesis of 2-Methyl-3-Substituted Tetrahydrofuran Precursors.
Monti Daniela;
2017
Abstract
Enantiopure 2-methyl-3-substituted tetrahydrofurans are key precursors of several biologically active products (drugs, flavors, and agrochemicals). Thus, a stereocontrolled and efficient methodology for the obtainment of these synthons is highly desirable. We exploited a two-step multienzymatic stereoselective cascade reduction of alpha-bromo-alpha,beta-unsaturated ketones to give the corresponding bromohydrins in good yields, with high ee and de values. The cascade process is catalyzed by an ene-reductase and an alcohol dehydrogenase. Further manipulations of these bromohydrins, by two diastereodivergent routes, allowed the preparation of the tetrahydrofuran synthons. One route is based on a lipase catalyzed cleavage of the protecting group. The second route is characterized by a camphor sulfonic acid mediated isomerization of a beta-hydroxyepoxide to give the tetrahydrofuran-2-ol. Finally, the synthesis of the most odorous and pleasant stereoisomer of the roasted meat aroma, i.e., (2S,3R)-2-methyl-3-thioacetate tetrahydrofuran, is reported as well.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.