Topology in condensed matter physics manifests itself in the emergence of edge or surface states protected by underlying symmetries. We review two-dimensional topological insulators whose one-dimensional edge states are characterized by spin-momentum locking and protected by time-reversal symmetry. We focus in particular on their transport properties in the presence of electron interactions, which can allow the onset of different backscattering mechanisms, thus leading to deviations from the quantized conductance observed in the ballistic regime. The combined presence of helicity and electron interactions creates a new paradigm of the one-dimensional world called helical Luttinger liquid, whose theoretical properties and experimental observations are reviewed.

Edge physics in two-dimensional topological insulators

Dolcetto G;Sassetti M;
2016

Abstract

Topology in condensed matter physics manifests itself in the emergence of edge or surface states protected by underlying symmetries. We review two-dimensional topological insulators whose one-dimensional edge states are characterized by spin-momentum locking and protected by time-reversal symmetry. We focus in particular on their transport properties in the presence of electron interactions, which can allow the onset of different backscattering mechanisms, thus leading to deviations from the quantized conductance observed in the ballistic regime. The combined presence of helicity and electron interactions creates a new paradigm of the one-dimensional world called helical Luttinger liquid, whose theoretical properties and experimental observations are reviewed.
2016
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Edge physics in two-dimensional topological insulators
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/358563
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? ND
social impact