The gas-phase alkylation of phenol with methanol, a reaction triggered for the production of o-cresol and 2,6-xylenol, is catalysed by MgO-based catalysts. Despite the industrial use of this process, the mechanism of the reaction - which is commonly believed to be based on a classical electrophilic attack of activated methanol onto the aromatic ring - is far from being fully understood. In some previous studies we reported that the reaction intermediate is salicylic alcohol, which is formed by the reaction between the adsorbed phenolate and formaldehyde, the latter being formed in-situ by methanol dehydrogenation. Here we elucidate the following steps of the reaction mechanism, by combining reactivity experiments and DFT calculation, with MgO as a model catalyst. It was found that salicylic alcohol dehydrates into quinone methide, which is then reduced via H-transfer by methanol to o-cresol. Moreover, a dehydrogenation/ hydrogenation equilibrium is established between salicylic alcohol and salicylic aldehyde. The methide can also react with methanol to form 2-methoxymethylphenol, which may decompose into ocresol, thus providing an alternative pathway for the formation of the alkylated compound.

A cascade mechanism for a simple reaction: The gas-phase methylation of phenol with methanol

Fausto Cargnoni;
2019

Abstract

The gas-phase alkylation of phenol with methanol, a reaction triggered for the production of o-cresol and 2,6-xylenol, is catalysed by MgO-based catalysts. Despite the industrial use of this process, the mechanism of the reaction - which is commonly believed to be based on a classical electrophilic attack of activated methanol onto the aromatic ring - is far from being fully understood. In some previous studies we reported that the reaction intermediate is salicylic alcohol, which is formed by the reaction between the adsorbed phenolate and formaldehyde, the latter being formed in-situ by methanol dehydrogenation. Here we elucidate the following steps of the reaction mechanism, by combining reactivity experiments and DFT calculation, with MgO as a model catalyst. It was found that salicylic alcohol dehydrates into quinone methide, which is then reduced via H-transfer by methanol to o-cresol. Moreover, a dehydrogenation/ hydrogenation equilibrium is established between salicylic alcohol and salicylic aldehyde. The methide can also react with methanol to form 2-methoxymethylphenol, which may decompose into ocresol, thus providing an alternative pathway for the formation of the alkylated compound.
2019
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
Phenol Methanol MgO Alkylation o-cresol Reaction mechanism
File in questo prodotto:
File Dimensione Formato  
prod_398885-doc_138246.pdf

solo utenti autorizzati

Descrizione: 2019_jcatal.pdf
Tipologia: Versione Editoriale (PDF)
Dimensione 3.24 MB
Formato Adobe PDF
3.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/358758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact