Distributed Web search engines (WSEs) require warehouse-scale computers to deal with the ever-increasing size of the Web and the large amount of user queries they daily receive. The energy consumption of this infrastructure has a major impact on the economic profitability of WSEs. Recently several approaches to reduce the energy consumption of WSEs have been proposed. Such solutions leverage dynamic voltage and frequency scaling techniques in modern CPUs to adapt the WSEs' query processing to the incoming query traffic without negative impacts on latencies. A state-of-the-art research approach is the PESOS (Predictive Energy Saving Online Scheduling) algorithm, which can reduce the energy consumption of a WSE' single server by up to 50%. We evaluate PESOS on a simulated distributed WSE composed of a thousand of servers, and we compare its performance w.r.t. an industry-level baseline, called PEGASUS. Our results show that PESOS can reduce the CPU energy consumption of a distributed WSE by up to 18% with respect to PEGASUS, while providing query response times which are in line with user expectations.
Efficient energy management in distributed web search
Catena M;Tonellotto N
2018
Abstract
Distributed Web search engines (WSEs) require warehouse-scale computers to deal with the ever-increasing size of the Web and the large amount of user queries they daily receive. The energy consumption of this infrastructure has a major impact on the economic profitability of WSEs. Recently several approaches to reduce the energy consumption of WSEs have been proposed. Such solutions leverage dynamic voltage and frequency scaling techniques in modern CPUs to adapt the WSEs' query processing to the incoming query traffic without negative impacts on latencies. A state-of-the-art research approach is the PESOS (Predictive Energy Saving Online Scheduling) algorithm, which can reduce the energy consumption of a WSE' single server by up to 50%. We evaluate PESOS on a simulated distributed WSE composed of a thousand of servers, and we compare its performance w.r.t. an industry-level baseline, called PEGASUS. Our results show that PESOS can reduce the CPU energy consumption of a distributed WSE by up to 18% with respect to PEGASUS, while providing query response times which are in line with user expectations.File | Dimensione | Formato | |
---|---|---|---|
prod_401210-doc_139394.pdf
solo utenti autorizzati
Descrizione: Efficient energy management in distributed web search
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_401210-doc_139810.pdf
accesso aperto
Descrizione: Efficient energy management in distributed web search
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.