The purpose of this paper is to show the application of a set of intelligent data analysis techniques to about 7 million of online travel reviews, with the aim of automatically extracting useful information. The reviews, collected from two popular online tourism-related review platforms, are all those posted by reviewers about one specific Italian location, from 2010 to 2017. To carry out the study, the following methodology is applied: a preliminary statistical analysis is performed to acquire general knowledge about the datasets, such as the geographical distribution of reviewers, their activities, and a comparison among the time of visits and the average scores of the reviews. Then, Natural Language Processing techniques are applied to extract and compare the most frequent words used in the two platforms. Finally, an Association Rule Learning algorithm is applied, to extract preferred destinations for distinct groups of reviewers, by mining interesting associations among the countries of origin of the reviewers and the most frequent destinations visited. By elaborating the available data, it is possible to automatically disclose valuable information for consumers and providers. The information automatically extracted can be exploited, for example, to build a recommender system for customers or a market analysis tool for service providers.

A study on online travel reviews through intelligent data analysis

Fazzolari M;Petrocchi M
2018

Abstract

The purpose of this paper is to show the application of a set of intelligent data analysis techniques to about 7 million of online travel reviews, with the aim of automatically extracting useful information. The reviews, collected from two popular online tourism-related review platforms, are all those posted by reviewers about one specific Italian location, from 2010 to 2017. To carry out the study, the following methodology is applied: a preliminary statistical analysis is performed to acquire general knowledge about the datasets, such as the geographical distribution of reviewers, their activities, and a comparison among the time of visits and the average scores of the reviews. Then, Natural Language Processing techniques are applied to extract and compare the most frequent words used in the two platforms. Finally, an Association Rule Learning algorithm is applied, to extract preferred destinations for distinct groups of reviewers, by mining interesting associations among the countries of origin of the reviewers and the most frequent destinations visited. By elaborating the available data, it is possible to automatically disclose valuable information for consumers and providers. The information automatically extracted can be exploited, for example, to build a recommender system for customers or a market analysis tool for service providers.
2018
Istituto di informatica e telematica - IIT
Online travel reviews
Frequent itemsets
Reviewers activities
Recurrent destinations
Text mining
Association rule mining
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/358912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact