The reliability of information in participatory sensing (PS) systems largely depends on the accuracy of the location of the participating users. However, existing PS applications are not able to efficiently validate the position of users in large-scale outdoor environments. In this paper, we present an efficient and scalable Location Validation System (LVS) to secure PS systems from location-spoofing attacks. In particular, the user location is verified with the help of mobile WiFi hot spots (MHSs), which are users activating the WiFi hotspot capability of their smartphones and accept connections from nearby users, thereby validating their position inside the sensing area. The system also comprises a novel verification technique called Chains of Sight, which tackles collusion-based attacks effectively. LVS also includes a reputation-based algorithm that rules out sensing reports of location-spoofing users. The feasibility and efficiency of the WiFi-based approach of LVS is demonstrated by a set of indoor and outdoor experiments conducted using off-the-shelf smartphones in Pisa, Italy, while the energy-efficiency of LVS is demonstrated by experiments using the Power Monitor energy tool. Finally, the security properties of LVS are analyzed by simulation experiments. Results indicate that the proposed LVS system is energy-efficient, applicable to most of the practical PS scenarios, and efficiently secures existing PS systems from location-spoofing attacks.
Practical Location Validation in Participatory Sensing Through Mobile WiFi Hotspots
Saracino A;Martinelli F
2018
Abstract
The reliability of information in participatory sensing (PS) systems largely depends on the accuracy of the location of the participating users. However, existing PS applications are not able to efficiently validate the position of users in large-scale outdoor environments. In this paper, we present an efficient and scalable Location Validation System (LVS) to secure PS systems from location-spoofing attacks. In particular, the user location is verified with the help of mobile WiFi hot spots (MHSs), which are users activating the WiFi hotspot capability of their smartphones and accept connections from nearby users, thereby validating their position inside the sensing area. The system also comprises a novel verification technique called Chains of Sight, which tackles collusion-based attacks effectively. LVS also includes a reputation-based algorithm that rules out sensing reports of location-spoofing users. The feasibility and efficiency of the WiFi-based approach of LVS is demonstrated by a set of indoor and outdoor experiments conducted using off-the-shelf smartphones in Pisa, Italy, while the energy-efficiency of LVS is demonstrated by experiments using the Power Monitor energy tool. Finally, the security properties of LVS are analyzed by simulation experiments. Results indicate that the proposed LVS system is energy-efficient, applicable to most of the practical PS scenarios, and efficiently secures existing PS systems from location-spoofing attacks.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.