Marine bio-resources are being widely studied as an invaluable source of compounds with therapeutic applicability. In particular, macroalgae contain an extended variety of bioactive compounds with different structures and promising biological applications. In this work, Ulva lactuca L. (hereafter UL) was utilyzed for the synthesis of gold and silver nanoparticles. Full characterization by UV-Vis spectroscopy, TEM, HRTEM and STEM miscroscopies, Z Potential and FTIR spectroscopy was performed. The first time in the scientific literature, the composition of carbohydrates of UL extract and their changes observed after nanoparticles synthesis were explored in order to investigate their possible role in the biosynthetic process. The reducing power, total phenolic content and DPPH scavenging activity of UL extract, Au@UL and Ag@UL nanoparticles were determined. The effects of UL extract, Au@UL and Ag@UL were tested in vitro on the colon cancer cell lines HT-29 and Caco-2, on normal primary neonatal dermal fibroblast cell line PCS-201-010, as well as on normal colon cell line CCD-112CoN. Lastly, the apoptotic activity and cellular uptake evaluation was determined for Au@UL and Ag@UL.

Macroalgae to nanoparticles: Study of Ulva lactuca L. role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines

Nasi Lucia;Salviati Giancarlo;
2019

Abstract

Marine bio-resources are being widely studied as an invaluable source of compounds with therapeutic applicability. In particular, macroalgae contain an extended variety of bioactive compounds with different structures and promising biological applications. In this work, Ulva lactuca L. (hereafter UL) was utilyzed for the synthesis of gold and silver nanoparticles. Full characterization by UV-Vis spectroscopy, TEM, HRTEM and STEM miscroscopies, Z Potential and FTIR spectroscopy was performed. The first time in the scientific literature, the composition of carbohydrates of UL extract and their changes observed after nanoparticles synthesis were explored in order to investigate their possible role in the biosynthetic process. The reducing power, total phenolic content and DPPH scavenging activity of UL extract, Au@UL and Ag@UL nanoparticles were determined. The effects of UL extract, Au@UL and Ag@UL were tested in vitro on the colon cancer cell lines HT-29 and Caco-2, on normal primary neonatal dermal fibroblast cell line PCS-201-010, as well as on normal colon cell line CCD-112CoN. Lastly, the apoptotic activity and cellular uptake evaluation was determined for Au@UL and Ag@UL.
2019
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
AgNP
AuNP
Caco-2
HT-29
Ulva lactuca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/358999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? ND
social impact