In this paper, we propose a new mathematical model describing the effect of phosphocitrate (PC) on sodium sulphate crystallization inside bricks. This model describes salt and water transport, and crystal formation in a one dimensional symmetry. This is a preliminary study that takes into account mathematically the effects of inhibitors inside a porous stone. To this aim, we introduce two model parameters: the crystallization rate coefficient, which depends on the nucleation rate, and the specific volume of precipitated salt. These two parameters are determined by numerical fitting of our model for both the case of the brick treated with PC and non treated one.

Mathematical modelling of experimental data for crystallization inhibitors

G Bretti;M Ceseri;R Natalini;
2017

Abstract

In this paper, we propose a new mathematical model describing the effect of phosphocitrate (PC) on sodium sulphate crystallization inside bricks. This model describes salt and water transport, and crystal formation in a one dimensional symmetry. This is a preliminary study that takes into account mathematically the effects of inhibitors inside a porous stone. To this aim, we introduce two model parameters: the crystallization rate coefficient, which depends on the nucleation rate, and the specific volume of precipitated salt. These two parameters are determined by numerical fitting of our model for both the case of the brick treated with PC and non treated one.
2017
Istituto Applicazioni del Calcolo ''Mauro Picone''
Porous media
Salt crystals
Crystallization inhibitors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/359173
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact