Aims. This work addresses the dissociative recombination, vibrational excitation, and vibrational de-excitation of electrons with CO+ molecular cations. The aim of this study is to understand the importance of these reactive collisions in producing carbon and oxygen atoms in cometary activity.
Context. In order to improve our understanding of the kinetics of the cometary coma, theoretical studies of the major reactive collisions in these environments are needed. Deep in the collisional coma, inelastic collisions between thermal electrons and molecular ions result in recombination and vibrational excitation, the rates of these processes being particularly elevated due to the high charged particle densities in the inner region.
Reactive collision of electrons with CO+ in cometary coma
Laporta V;
2018
Abstract
Context. In order to improve our understanding of the kinetics of the cometary coma, theoretical studies of the major reactive collisions in these environments are needed. Deep in the collisional coma, inelastic collisions between thermal electrons and molecular ions result in recombination and vibrational excitation, the rates of these processes being particularly elevated due to the high charged particle densities in the inner region.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.