Aims. This work addresses the dissociative recombination, vibrational excitation, and vibrational de-excitation of electrons with CO+ molecular cations. The aim of this study is to understand the importance of these reactive collisions in producing carbon and oxygen atoms in cometary activity.

Context. In order to improve our understanding of the kinetics of the cometary coma, theoretical studies of the major reactive collisions in these environments are needed. Deep in the collisional coma, inelastic collisions between thermal electrons and molecular ions result in recombination and vibrational excitation, the rates of these processes being particularly elevated due to the high charged particle densities in the inner region.

Reactive collision of electrons with CO+ in cometary coma

Laporta V;
2018

Abstract

Context. In order to improve our understanding of the kinetics of the cometary coma, theoretical studies of the major reactive collisions in these environments are needed. Deep in the collisional coma, inelastic collisions between thermal electrons and molecular ions result in recombination and vibrational excitation, the rates of these processes being particularly elevated due to the high charged particle densities in the inner region.
2018
Aims. This work addresses the dissociative recombination, vibrational excitation, and vibrational de-excitation of electrons with CO+ molecular cations. The aim of this study is to understand the importance of these reactive collisions in producing carbon and oxygen atoms in cometary activity.
comets: general
molecular processes
molecular data
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/359296
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact