The Neutral Beam Injector (NBI) system for DEMO is designed to deliver a beam with energy 800 keV, accelerated current 34 A, and will require a neutralization efficiency for negative ions larger than 70 % [1]. Research groups in France and Switzerland are developing a new source concept for DEMO NBI based on a magnetized plasma column produced by a helicon antenna [2]. In RAID (Resonant Antenna Ion Device) at the Swiss Plasma Center, the physics of volume-produced negative ions and helicon plasmas is investigated. RAID is a linear device producing steady state plasma discharges with different gases, including H2 and D2, by means of a resonant helicon antenna with RF power up to 10 kW [3-4]. Previous optical emission spectroscopy (OES) data reveal a significant volume production of H - and D- and a favorable scaling law with power [5]. To confirm the previous results with a totally independent technique for detecting negative ions, Cavity Ring-Down Spectroscopy (CRDS) was recently installed. We present first CRDS measurements, wh i c h provide values in agreement with OES, confirming that negative ions are produced in the RAID plasma column with significant densities. RAID is also devoted to the study of helicon wave physics and, in particular, of the mechanisms that lead to the production of a steady state plasma discharge. Many physics issues on helicon plasma sources are still open regarding, for instance, how the power is deposited in the plasma. We present three-dimensional plasma density and temperature profiles measured by means of a two-axis Langmuir probe and calibrated with a 100 GHz microwave interferometer. These reveal the production of a radially peaked density and temperature plasma column with good homogeneity in the axial direction for up to one meter. This last property could be favorable for the homogeneity of negative ion production. Moreover, magnetic probe measurements are used to reconstruct the propagation of helicon waves for comparison with COMSOL simulations, with the aim of linking together different plasma regimes and negative ion production.

Negative ion and helicon wave physics on the Resonant Antenna Ion Device (RAID)

Barbisan M;Pasqualotto R;
2018

Abstract

The Neutral Beam Injector (NBI) system for DEMO is designed to deliver a beam with energy 800 keV, accelerated current 34 A, and will require a neutralization efficiency for negative ions larger than 70 % [1]. Research groups in France and Switzerland are developing a new source concept for DEMO NBI based on a magnetized plasma column produced by a helicon antenna [2]. In RAID (Resonant Antenna Ion Device) at the Swiss Plasma Center, the physics of volume-produced negative ions and helicon plasmas is investigated. RAID is a linear device producing steady state plasma discharges with different gases, including H2 and D2, by means of a resonant helicon antenna with RF power up to 10 kW [3-4]. Previous optical emission spectroscopy (OES) data reveal a significant volume production of H - and D- and a favorable scaling law with power [5]. To confirm the previous results with a totally independent technique for detecting negative ions, Cavity Ring-Down Spectroscopy (CRDS) was recently installed. We present first CRDS measurements, wh i c h provide values in agreement with OES, confirming that negative ions are produced in the RAID plasma column with significant densities. RAID is also devoted to the study of helicon wave physics and, in particular, of the mechanisms that lead to the production of a steady state plasma discharge. Many physics issues on helicon plasma sources are still open regarding, for instance, how the power is deposited in the plasma. We present three-dimensional plasma density and temperature profiles measured by means of a two-axis Langmuir probe and calibrated with a 100 GHz microwave interferometer. These reveal the production of a radially peaked density and temperature plasma column with good homogeneity in the axial direction for up to one meter. This last property could be favorable for the homogeneity of negative ion production. Moreover, magnetic probe measurements are used to reconstruct the propagation of helicon waves for comparison with COMSOL simulations, with the aim of linking together different plasma regimes and negative ion production.
2018
Istituto gas ionizzati - IGI - Sede Padova
Neutral Beam Injector
NBI
Resonant Antenna Ion Device
RAID
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/359421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact