The word "e-motion" derives from the Latin word "ex-moveo" which literally means "moving away from something / somebody". Emotions are thus fundamental to prime action and goal-directed behavior with obvious implications for individual's survival. However, the brain mechanisms underlying the interactions between emotional and motor cortical systems remain poorly understood. A recent diffusion tensor imaging study in humans has reported the existence of direct anatomical connections between the amygdala and sensory/(pre)motor cortices, corroborating an initial observation in animal research. Nevertheless, the functional significance of these amygdala-sensory/(pre)motor pathways remain uncertain. More specifically, it is currently unclear whether a distinct amygdala-sensory/(pre)motor circuit can be identified with resting-state functional magnetic resonance imaging (rs-fMRI). This is a key issue, as rs-fMRI offers an opportunity to simultaneously examine distinct neural circuits that underpin different cognitive, emotional, and motor functions, while minimizing task-related performance confounds. We therefore tested the hypothesis that the amygdala and sensory/(pre)motor cortices could be identified as part of the same resting-state functional connectivity network. To this end, we examined independent component analysis results in a very large rs-fMRI data-set drawn from the Human Connectome project (n=820 participants, mean age: 28.5 years). To our knowledge, we report for the first time the existence of a distinct amygdala-sensory/(pre)motor functional network at rest. rs-fMRI studies are now warranted to examine potential abnormalities in this circuit in psychiatric and neurological diseases that may be associated with alterations in the amygdala-sensory/(pre)motor pathways (e.g., conversion disorders, impulse control disorders, amyotrophic lateral sclerosis, and multiple sclerosis).
Functional Connectivity in Amygdalar-Sensory/(Pre)Motor networks at rest: New evidence from the Human Connectome Project
Luca Passamonti
2017
Abstract
The word "e-motion" derives from the Latin word "ex-moveo" which literally means "moving away from something / somebody". Emotions are thus fundamental to prime action and goal-directed behavior with obvious implications for individual's survival. However, the brain mechanisms underlying the interactions between emotional and motor cortical systems remain poorly understood. A recent diffusion tensor imaging study in humans has reported the existence of direct anatomical connections between the amygdala and sensory/(pre)motor cortices, corroborating an initial observation in animal research. Nevertheless, the functional significance of these amygdala-sensory/(pre)motor pathways remain uncertain. More specifically, it is currently unclear whether a distinct amygdala-sensory/(pre)motor circuit can be identified with resting-state functional magnetic resonance imaging (rs-fMRI). This is a key issue, as rs-fMRI offers an opportunity to simultaneously examine distinct neural circuits that underpin different cognitive, emotional, and motor functions, while minimizing task-related performance confounds. We therefore tested the hypothesis that the amygdala and sensory/(pre)motor cortices could be identified as part of the same resting-state functional connectivity network. To this end, we examined independent component analysis results in a very large rs-fMRI data-set drawn from the Human Connectome project (n=820 participants, mean age: 28.5 years). To our knowledge, we report for the first time the existence of a distinct amygdala-sensory/(pre)motor functional network at rest. rs-fMRI studies are now warranted to examine potential abnormalities in this circuit in psychiatric and neurological diseases that may be associated with alterations in the amygdala-sensory/(pre)motor pathways (e.g., conversion disorders, impulse control disorders, amyotrophic lateral sclerosis, and multiple sclerosis).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.