Polymer mixed matrix membranes are the state-of-the-art materials for membrane based pharmaceuticals and bio-macromolecule separation applications. The present work demonstrates the fabrication of PPSu (polyphenylsulfone) and SPPSu (Sulfonated polyphenylsulfone)/nanoparticle titanium oxide (TiO2) hollow fiber membranes by phase inversion technique. SPPSu/TiO2 hollow fiber membranes resulted on higher flux about 25.5% compare to neat membrane, and with improved thermal and mechanical properties. The tethered of nanoparticle TiO2 and sulfonation on polymer matrix tailors the surface chemistry of the composite hollow fiber membrane by altering the morphology and water permeability. Cross section morphology was analyzed using a scanning electron microscopy (SEM). Surface topography were scanned using atomic force microscope (AFM) and nanocomposite membrane resulted with smooth surfaces. The pH-dependent surface charge properties of the prepared hollow fibers were determined through electro kinetic analyzer, demonstrating that the sulfonated PPSu blend membrane surface was negatively charged. The prepared membranes were also subjected to rejection ability of varying molecular weights of proteins and assigned the molecular weight cut-off of the membranes. SPPSu/TiO2 mixed matrix membranes resulted in improved (Rt ? 22%) antifouling properties.

Separation of proteins and antifouling properties of polyphenylsulfone based mixed matrix hollow fiber membranes

Figoli A;
2017

Abstract

Polymer mixed matrix membranes are the state-of-the-art materials for membrane based pharmaceuticals and bio-macromolecule separation applications. The present work demonstrates the fabrication of PPSu (polyphenylsulfone) and SPPSu (Sulfonated polyphenylsulfone)/nanoparticle titanium oxide (TiO2) hollow fiber membranes by phase inversion technique. SPPSu/TiO2 hollow fiber membranes resulted on higher flux about 25.5% compare to neat membrane, and with improved thermal and mechanical properties. The tethered of nanoparticle TiO2 and sulfonation on polymer matrix tailors the surface chemistry of the composite hollow fiber membrane by altering the morphology and water permeability. Cross section morphology was analyzed using a scanning electron microscopy (SEM). Surface topography were scanned using atomic force microscope (AFM) and nanocomposite membrane resulted with smooth surfaces. The pH-dependent surface charge properties of the prepared hollow fibers were determined through electro kinetic analyzer, demonstrating that the sulfonated PPSu blend membrane surface was negatively charged. The prepared membranes were also subjected to rejection ability of varying molecular weights of proteins and assigned the molecular weight cut-off of the membranes. SPPSu/TiO2 mixed matrix membranes resulted in improved (Rt ? 22%) antifouling properties.
2017
Istituto per la Tecnologia delle Membrane - ITM
Hollow fiber; PPSu; Mixed matrix membrane; Protein separation; Nanocomposite; Sulfonated membrane
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/359664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? ND
social impact